
HUBPA: High Utilization Bidirectional Pipeline Architecture for
Neuromorphic Computing

Houxiang Ji
Shanghai Jiao Tong University

jihouxiang@sjtu.edu.cn

Li Jiang∗

Shanghai Jiao Tong University
ljiang_cs@sjtu.edu.cn

Tianjian Li
Shanghai Jiao Tong University

ltj2013@sjtu.edu.cn

Naifeng Jing
Shanghai Jiao Tong University

sjtuj@sjtu.edu.cn

Jing Ke
Shanghai Jiao Tong University

kejing@cs.sjtu.edu.cn

Xiaoyao Liang
Shanghai Jiao Tong University

liang-xy@cs.sjtu.edu.cn

ABSTRACT

Training Convolutional Neural Networks(CNNs) is both memory-

and computation-intensive. The resistive random access memory

(ReRAM) has shown its advantage to accelerate such tasks with high

energy-efficiency. However, the ReRAM-based pipeline architec-

ture suffers from the low utilization of computing resource, caused

by the imbalanced data throughput in different pipeline stages

because of the inherent down-sampling effect in CNNs and the

inflexible usage of ReRAM cells. In this paper, we propose a novel

ReRAM-based bidirectional pipeline architecture, named HUBPA,

to accelerate the training with higher utilization of the computing

resource. Two stages of the CNN training, forward and backward

propagations, are scheduled in HUBPA dynamically to share the

computing resource. We design an accessory control scheme for the

context switch of these two tasks. We also propose an efficient algo-

rithm to allocate computing resource for each neural network layer.

Our experiment results show that, compared with state-of-the-art

ReRAM pipeline architecture, HUBPA improves the performance

by 1.7× and reduces the energy consumption by 1.5×, based on the

current benchmarks.

CCS CONCEPTS

• Computer systems organization → Architectures; Neural

networks;

KEYWORDS

ReRAM, Neuromorphic Computing, CNN, Edge Computing, On-

device Training

ACM Reference Format:

Houxiang Ji, Li Jiang, Tianjian Li, Naifeng Jing, Jing Ke, and Xiaoyao Liang.

2019. HUBPA: High Utilization Bidirectional Pipeline Architecture for Neu-

romorphic Computing. In ASPDAC ’19: 24th Asia and South Pacific Design

∗Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPDAC ’19, January 21–24, 2019, Tokyo, Japan

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6007-4/19/01. . . $15.00
https://doi.org/10.1145/3287624.3287674

Automation Conference (ASPDAC ’19), January 21–24, 2019, Tokyo, Japan.

ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3287624.3287674

1 INTRODUCTION

DeepNeural Networks, e.g., Convolutional Neural Networks (CNNs)

have been widely applied in a broad range of applications. More-

over, with the emergence of semi-supervised learning [4, 10] and

reinforce learning [7], superior architectures are expected to support

on device DNN training on the edge [5, 6]. Conventionally, clusters

of multiprocessors and GPGPUs [2, 12] are suitable for the heavy

workloads in DNN training while application-specific accelerators

[1, 11] are designate to the DNN inference. However, all existing

solutions are challenged by the slow-down of Moore’s Law and

fail to support both training and inference tasks with constrained

computing power on edge.

Themetal-oxide resistive random access memory (ReRAM) cross-

bars are capable of in-memory processing, and thereby avoid the

huge data movement between the computation units and memories.

Moreover, ReRAM-crossbar shows its great potential in DNN accel-

eration because of its inherent efficiency for matrix-multiplication.

Synaptic weights(w) can be encoded as the conductance of ReRAM

cells. The multiplication and addition between weight matrix(W)

and the input vector (A) execute in a direct and fast way by the bit-

line current accumulation. Recent advancement affiliates ReRAM-

crossbar with other superior characteristics like high density [18].

Several ReRAM-based pipeline architectures are proposed to

support CNN inference and training [15, 17]. However, the compu-

tation efficiency and resource utilization in existing ReRAM-based

pipeline architecture are degraded by following issues: 1) Consid-

erable amount of computation units are idle in most of the time.

The existence of pooling layer and convolutional layer in CNN in-

evitably incurs the load imbalance among layers and thereby idles

the computing resources. These idle hardware are called Bubbles
for simplicity. The overall hardware utilization is less than 6% in

cutting-edge architecture for CNN [15] when executing VGG16, and

decreases dramatically as the CNN goes deeper. Although hardware

redundancy [17] can alleviate such imbalance, the overhead is not

affordable when the CNN goes too deep. 2)Unequal cost for reading

and writing on ReRAM cells. The write operation on ReRAM cells

is more energy-consuming than the read operation and degrades

the endurance. Thus, designers tend to avoid the weight update in

ReRAM cells, which also prohibits the share of ReRAM-crossbar

among different weight matrices for utilization enhancement.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3287624.3287674&domain=pdf&date_stamp=2019-01-21

ASPDAC ’19, January 21–24, 2019, Tokyo, Japan Houxiang Ji, Li Jiang, Tianjian Li, Naifeng Jing, Jing Ke, and Xiaoyao Liang

To alleviate the above challenges, we propose a novel bidirec-

tional ReRAM-based pipeline architecture, named HUBPA, to im-

prove the hardware utilization and the throughput in CNN training.

This paper makes the following contributions:

• Wedesign the specific hardware and software control schemes

to support dynamic context switching between forward and

backward propagation (two basic reverse operations in train-

ing) to achieve higher throughput and utilization.

• We propose efficient layer-wise hardware allocation algo-

rithm which supports various neural networks. Moreover,

in each layer, the algorithm raises an explicit task switching

scheme for every ReRAM crossbar.

• We evaluate HUBPA on several state-of-the-art CNNs, and

HUBPA improves the throughput by 1.5× and reduce the

energy consumption by 1.6× averagely compared with the

state-of-the-art ReRAM-based pipeline architecture architec-

tures.

The rest of the paper is organized as follows: Section 2 introduces

the background. Section 3 analyzes the existing architecture and

motivates this paper. The architecture design and data flow are

presented in Section 4. We show the evaluation result in Section 5

and conclude this paper in Section 6.

2 BACKGROUND

In this section, we illustrate the training processes of CNN in the

state-of-the-art ReRAM-based pipeline architectures.

2.1 The process of CNN training

CNN contains convolution layers, pooling layers, and fully con-

nected layers. Rational and dedicated combination of these primary

layers builds up the CNN with notable accuracy. The input data

flows through layers and generates standard feature maps between

layers. The high-level features are extracted by layer-wise convolu-

tion and downsampling. Convolution operation consists of basic

multiplication and addition. Downsampling occurs in the pooling

layer. A 4-to-1 max pooling layer, for example, picks the maximum

value from a 2 × 2 window and send to the next layer [6].

We then present how the CNN training works on the ReRAM-

based architecture. The training process includes the Forward Prop-

agation(FP) and Backward Propagation(BP) while the inference

process only includes FP. FP is a sequence of dot product between

weight matrix in layer L (WL) and vector (i), yL = f (�i ⊗WL). As

indicated in Fig. 1, ReRAM crossbar (XB) holds the weight matrix

W and performs the dot-product operation.

During training, FP derives output results by pushing input

samples through layers. The comparison between labels and output

generates error is used to tune the weights in BP, and consequently

to minimize the error. BP is a sequence of error propagation and

weight updates. Loss functions (δL = f ′ ◦ (yL − t)) generates
errors (δL) in layer L, where t is the existing label. δL joins the

convolution to generate error in previous layer L − 1: δL−1 = δL ⊗

(WL)
T ◦ f ′. The partial derivatives of weight in layer L (ΔWL) are

generated by convolution on the error (δL) and intermediate results

in layer L − 1, ΔW = yL−1⊗δL
T . When the CNN is trained in batch,

the weights can be updated with the average partial derivatives

derived in every n (batch size) iterations of BPs.

 XB

Forward

Loss
Function1

T
L Lw y

Layer1

Input

AD

Per

SHXB

DA AD

Per

SHXB

DA

O
utput

AD

Per

SHXB

DA Input

Global Buffer

Layer

AD

Per

SHXB

DA

Layer1 Layer

L
y1Ly

Figure 1: Basic Training flow of Convolutional Neural Net-

works on ReRAM-based Architecture.

2.2 ReRAM-based Pipeline Architecture

As discussed in section 1, the existence of bubbles significantly

degrades the performance. Replication of computing resources,

ReRAM crossbar and accessory components like ADC/DAC, alle-

viates the workload imbalance among layers and thus reduce the

bubbles. However, enormous replications are required to eliminate

all bubbles, e.g., 180× replications of computing resource for a VGG-

16 CNN [17]. The desired replication exponentially increases with

the CNN going deeper and broader.

Pipelayer [17] allocates dedicated pipelines for FP and BP, di-

viding the computing resource spatially to avoid frequent update

in ReRAM cells. We named it Space Divided Multiplexing (FP/BP)

Propagations (SDMP). In SDMP, FP and BP execute in parallel on

their dedicated hardware. Every piece of hardware is only able

to support a single task, either FP or BP, all the time. Use a CNN

with three conv-layers (L1 to L3) as an example. A 4-to-1 max

pooling layer attaches each layer. Si denotes the amount of com-

puting resource assigned to layer i . The blocks under Si denote
the unit of computing resource occupied by layer i . In Fig. 2(a),

S1 = 8, S2 = S3 = 2. SDMP finishes one FP and one BP in 6 cycles.

They execute in parallel, and no computation unit switches between

two tasks. In each cycle, four convolutional results are generated

in S1 and enter the pooling layer. Only one result goes to S2 from
the pooling layer. S3 has waited for 5 idle cycles (bubbles) to derive

one result. Moreover, the BP has the same amount of bubbles as

it performs the symmetric operations. Note that the BP process in

SDMP is one iteration earlier than the FP process.

3 MOTIVATION AND KEY IDEAS

3.1 Time Divided Multiplexing Propagation

We propose an alternative approach named Time Divided Multi-

plexing (FP/BP) Propagations (TDMP) as a baseline. In TDMP, FP

or BP occupies all the computing resource at one time; the hard-

ware can support the context switching between FP and BP. TDMP

consists of a sequence of FP and BP in the same iteration. TDMP

decouples the pipelines of FP and BP in the time domain. The basic

HUBPA: High Utilization Bidirectional Pipeline Architecture for Neuromorphic ComputingASPDAC ’19, January 21–24, 2019, Tokyo, Japan

FP

Idle

BP

T1

T2

T3

T4

T5

T6

T7

T8

(b)TDMP

T1

T2

T3

T4

T5

T6

(a)SDMP

S1 S2 S3

S1 S2 S3

Figure 2: Utilization of limited computing resource in SDMP

and TDMP

timeline of TDMP is shown in Fig. 2(b). The hardware allocation is

the same with SDMP example: S1 = 8, S2 = S3 = 2. TDMP finished

the FP in the first four cycles and symmetrically finished the BP in

the last four cycles sequentially. Note that the FP and BP processes

belong to the same iteration of training. Compared with SDMP,

however, TDMP spends a longer time to accomplish one iteration

of training.

3.2 Resource Sharing for Simultaneous
Forward/Backward Propagation

To maximize the utilization of these idle computing resource, we

propose the resource sharing scheme.

The resource sharing between FP and BP stands on the following

fact: the FP and BP computations in the same layer involve a weight

matrix and its transposition, respectively. Thus, FP and BP processes

in the same layer can share the same computing resource. As we de-

scribed in Section 1, in the ReRAM crossbar architecture, the matrix

transposition can be easily implemented by altering the direction

of voltage entrance and current accumulation on the same cross-

bar(XB). Besides, both FP and BPs can use the same ADCs/DACs,

sample-and-hold (S+H), and other peripheral circuits (Per). These

are essential basics for our proposed architecture.

In SDMP, FP and BP have their dedicated hardware resources.

This dedicated hardware allocation incurs many bubbles and pro-

hibits the potential benefits from resource sharing between two

propagations. In TDMP, FP and BP share the computing resource,

but the FP and BP task must execute sequentially. The sequential ex-

ecution of FP and BP also incurs many bubbles. This idle hardware

gives us the opportunity for further improvement. In this work, the

computing resource in a single layer can simultaneously carry out

both the FP and BP from two subsequent training iterations. The

control scheme and devise components are essential to support the

resource sharing between FP and BP.

The resource allocation for subsequent training iterations also

delimits the overall resources utilization and the performance. It

is desired to design an efficient resource allocation algorithm to

reduce the bubbles, given the CNN topology and the number of

total computing resources.

XB0

D
A

C

T
(0,0)

T
(0,1)

T
(0,2)

T
(1,1)

T
(0,3)

T
(1,2)

T
(1,0)

S&H

XB1

D
A

C

S&H

XB2

D
A

C

S&H

XB3

D
A

C

S&H

I/O
 Interface

SFU

T
(2,0)

T
(2,1)

T
(2,2)

T
(3,1)

T
(2,3)

T
(3,2)

T
(3,0)

T
(3,3)

ADC

IR

S&A

T
(1,3)

CHIP

PE0 PE1

PE2 PE3

PE: Processing Engine ADC: Analog to Digital
S&A: Shift and Add DAC: Digital to Analog
FP/BPB: Buffer SFU: Special Function
S&H: Sample and Hold XB: Memristor Crossbar

Tile
Controller

FPB

BPB

Deployer

Tracker

OR

M
em

ory

Figure 3: Proposed Architecture

4 THE PROPOSED HUBPA DESIGN

This section presents the proposed bidirectional ReRAM pipeline

architecture followed by the details of the control mechanism for

the resource sharing, the software preparation, and the data flow.

4.1 Overall Architecture

Fig. 3 represents our architecture design extended from the ISAAC

design [15]. The colored components are our extension. A ReRAM

chip composes of multiple tiles (T), connected with an on-chip

concentratedmesh (c-mesh). The chip contains a deployer to flexibly

deploy CNN among tiles and to load the control vectors into the

tile controllers. A chip uses the I/O interface to access the off-chip

memory and communicate with other chips.

A tile is composed of multiple processing engines (PEs) con-

nected by a shared bus, tile controllers, memory trackers, eDRAM

on-chip buffers, and Input/Output registers. A special function

unit (SFU) inhabits in each tile, which contains a comparator, mul-

tipliers and logic circuits supporting the activation functions of

CNNs. Each tile can dynamically allocate the computing resource

between FP and BP process. PE is composed of multiple memristor

crossbars (XBs), each of which connects a DAC and sample-and-

hold circuits (S&H). The chip loads/stores feature maps and gradient

maps from/to off-chip memory by the I/O interface. The eDRAM

buffers temporarily hold the feature maps that are reused in the

following convolutional operations. We double the on-chip buffers

(FP Buffer, BP Buffer) to support both FP and BP modes. The input

register, a 1KB SRAM, fetches the data from eDRAM buffer by the

shared bus. The PE array then fetches data from the input register

by the same shared bus. The crossbars can transfer as much as

2KB data within a 100ns cycle. The designed eDRAM and shared

bus thus can afford the maximum bandwidth requirement. The

output register is used to accommodate the output results of each

convolution layer.

4.2 Control Mechanism

Three control components are devised to support complete CNN

executions. A tile is a basic execution unit, on which all resources

execute the same propagation process (either FP or BP).

ASPDAC ’19, January 21–24, 2019, Tokyo, Japan Houxiang Ji, Li Jiang, Tianjian Li, Naifeng Jing, Jing Ke, and Xiaoyao Liang

Address

Controller

...

XB

XB

XB
Output

Data

I/O
Bus

Input
Data

FP
 B

uf
fe

r

Sw
itc

h

S+H
S+

HXB

XB

XB

XB

XBGlobal
Address

SR:01->10
FP DReg
BP DReg

BP Buffer

Destination
Address

Figure 4: Mode Switch from FP(blue) to BP(orange)

Chip Deployer provides control signals for each tile, by loading

the control vector into the tile controller on each tile and maintains

the status table for each tile. The status table maintains as many

status bits as the number of tiles. Each bit records the status for

corresponding tile, idle (0) or occupied (1). The controller fetches

the weight matrix according to the destination address maintained

in the status table and loads the weight matrix into the ReRAM

crossbar of the tile. The chip deployer configures these destination

addresses based on the resource deployment algorithm described

in the section 4.4.

Tile Controller controls the mode of each tile in the runtime.

The tile controller contains a register with two bits to represent the

three computation modes of each tile: FP (01), BP (10), idle (00 &

11), and local registers (BP and FP separately) to keep the target

eDRAM buffer addresses and different accumulator addresses for

different modes. The switches and muxes activated by the control

signals from the tile controller make the context switching between

different assignedmodes. The results from each tile will be delivered

to the target tiles based on the stored destination address later.

Memory Tracker: Data synchronization in every cycle is re-

quired to keep the correct functionality of the neural network.

Memory tracker records read/write memory accesses, and ensures

that the access sequence confirms the memory addresses in the

tile controller. Memory tracker also tracks the intermediate results

stored in each eDRAM buffer. These results are sent to the pooling

layer, and consequently the next layer. The memory tracker refers

to tile controller for the addresses of the target tile deployed with

the weight matrix of the next CNN layer.

4.3 Mode Switching

The context switching between FP and BP follows three rules: 1)

change as few tiles as possible; 2) avoid interruptions on FP/BP;

3) the ahead layers have higher priority since they demand more

computing resources when propagation arrives.

Fig. 4 demonstrates how the tile controller switches the tile

between the FP and BPmodes. The state register in the tile controller

records the state of tile and then sends the signal to the switch mux.

When the state indicates FP, I/O input data enters the FP data buffer

(indicated by blue lines). The DAC converts the data to the analog

signal and horizontally applied to the ReRAM crossbar. The currents

accumulate at the bottom of the crossbar. The result is delivered

to the memory according to the address stored in the destination

address register. When the state changes to 10 (BP), the data goes

through the BP data buffer (indicated by orange lines). The signal

enters the crossbar at the top interface and leaves at the right side.

We ignore the ADC/DAC components for clarity. Afterward, the

result of FP and BP is processed in different components. It is clear

that only the FP and BP operated in the same layer shares the same

ReRAM crossbar.

4.4 Resource Deployment

Based on the CNN topology and computing resource, this section

describes how to allocate the resource for each CNN layer and

generates the corresponding information.

In previous works, the resources are simply allocated equally

for each layer of CNN which idles a large fraction of resources in

the tail layers. The problem of resource allocation is formulated as

below: Given a N convolution layer (L1 to LN) CNN, the pooling

size between layer i and layer i+1 is Pi and the resource allocated to
layer i is Si . There are S tiles in total. Here Si ,S ,N ,P are all integers.

Subject to :

S =
∑
N

i=1 Si

{
Si ≥ 1
Si

Si+1
≤ Pi

(1)

To minimize :

f =
N∑
i=1

(
Si
Si+1

− Pi

)2
(2)

In the subjection (1), we assure each layer has at least one tile to

guarantee the normal execution; The ratio of resource amount in

adjacent layers cannot exceed the pooling layer size to avoid the

potential waste because no bubble exists if Si

Si+1
= Pi . The target

function (2) aims to keep the pipeline as busy as possible by making

the ratio of resources between adjacent layers closer to the pooling

layer size. Note that the algorithm does not take the size of a layer

into consideration. A direct and explicit explanation is shown using

Si as example. The subjection changes when it comes to SDMP. In

SDMP, dedicated resources are assigned to FP and BP, separately;

therefore at least two or multiples of two are required for each

layer:

S =
∑
N

i=1 Si

⎧⎪⎪⎨⎪⎪⎩
Si

Si+1
≤ Pi

Si ≥ 2

Simod2 = 0

(3)

For small-scale CNN layer, we replicate the computing resource

allocated to it to compose a whole tile. For large-scale layer, we

divide the resource requirement into several tiles; these tiles can

communicate with each other and compute simultaneously. We

divide the resource requirement based on the input channel so that

a single tile only stores partial channels of feature maps. Conse-

quently, some of the tiles have to act as accumulators, i.e., they

accumulate the output results of different tiles and then apply them

to the activation function. In the evaluation section, we have im-

plemented several large-scale CNNs to evaluate our design.

4.5 Dataflow

We display the data flow of the proposed HUBPAD architecture,

using the same example CNN in Fig. 2 for the fair comparison.

The size of the weight matrix in layers is ignored for simplicity

here as it can be simply scaled up during the implementation. In

HUBPA: High Utilization Bidirectional Pipeline Architecture for Neuromorphic ComputingASPDAC ’19, January 21–24, 2019, Tokyo, Japan

FP

Idle

BP
T1

T2

T3

T4

T5

T6

T7

T8

T9

HUBPA

S1 S2 S3

Figure 5: Utilization of limited computing resource utiliza-

tion in HUBPA

this example, there are 12 tiles in total. In our resource allocation

algorithm, the numbers of tiles allocated for each layer are 8, 3, 1

in HUBPA(and TDMP), and 8, 2, 2 in SDMP. This allocation can

yield the best throughput given such limited resource according to

section 4.4. As shown in Fig. 5 and Fig. 2, HUBPA finishes one FP

and one BP in 5 cycles and two FP and two BP in 9 cycles. SDMP

finishes one FP and one BP in 6 cycles. TDMP finishes one FP and

one BP in 8 cycles. Furthermore, to finish N (N > 1) FP and BP

under this circumstance, HUBPA consumes 5 + 4 × (N − 1) cycles

while SDMP consumes 6 × N and TDMP 8 × N . The larger N is,

the more significant the improvement is. Section 5 shows Further

experiments results.

5 EVALUATION

Figure 6: The parameters of proposed architecture.

5.1 Experiment Setup

Fig. 6 represents the parameters of ReRAM based chips. In order

to evaluate the proposed architecture, we evaluate eight start-of-

art deep convolutional neural networks. Five of the benchmarks

are VGG [16]-based, and three of them are MSRA [8]-based. All

networks are evaluated on the widely used ImageNet [14] data set.

TDMP and SDMP[17] with the same amount of computing resource

are compared with our HUBPA in the evaluation.

Performance Evaluation We build a detailed and cycle-level

simulator based on the NVsim [3], implemented in C++. The simu-

lator can record all events including the dot-product computations,

N
or

m
.T

hr
ou

gh
pu

t

0

0.5

1

1.5

2

2.5 TDMP SDMP HUBPA

Figure 7: Comparisons on throughput normalized to TDMP

across various CNNs

U
til

iz
at

io
n

0

0.2

0.4

0.6

0.8

1 TDMP SDMP HUBPA

Figure 8: Comparisons on the utilization of computing re-

sources across various CNNs

data transfer and on/off-chip memory accesses. The write/read la-

tency model of memristors refers to [19]. We integrate the DRAM-

sim2 [13] into the simulator to model the delay and energy of

off-chip DRAM memory accesses.

Energy Evaluation The energy and layout of memristor cells

are also derived from models in [19]. Besides, the energy for the

shift-and-add circuits, the max-pooling circuit, and the sigmoid

operation inherited the analysis in ISAAC [15]. We use the CACTI

6.5 to model the eDRAM buffer, and the interconnect in the archi-

tecture. DRAMsim2 [13] is used to model the energy of off-chip

memory access. A compact 8-bit ADC is used in our experiments.

We deploy a 1-bit DAC for each row in ReRAM crossbar. We can

explore multi-bit DACs by using the power model in [9].

5.2 Results Analysis

Performance. Fig. 7 represents the throughput for a variety of

pipeline designs and neural networks. The results are normalized

to the throughput of TDMP. The throughput of SDMP is lowest,

about 20% lower than TDMP. HUBPA achieves the highest average

throughput, 1.6× higher than TDMP and 2.2× than SDMP. In the

deepest network, MSRA-3, HUBPA achieves 2.1× throughput over

TDMP. The more layers a neural network, the higher performance

is achieved by HUBPA. Because a deeper neural network often has

more down-sampling stages that lead to more bubbles.

Fig. 8 shows the computing resource utilization in TDMP,

SDMP and HUBPA. The utilization degrades as the neural network

becomes deeper (VGG-A to VGG-E, MSRA-1 to MSRA-3). In MSRA-

1, TDMP achieves 47% utilization, and in MSRA-3, the utilization

decreases to 35%. SDMP achieves 43% utilization in MSRA-1 and

MSRA-2 on average, and it degrades to only 8% in MSRA-3. The

ASPDAC ’19, January 21–24, 2019, Tokyo, Japan Houxiang Ji, Li Jiang, Tianjian Li, Naifeng Jing, Jing Ke, and Xiaoyao Liang

utilization of HUBPA is more than 70% in VGG-A,VGG-B, and VGG-

C. In MSRA-1 and MSRA-2, the utilization can achieve above 85%.

Even in the MSRA-3, HUBPA still maintains 70%. The utilization of

HUBPA increases notably.

Fig. 9 represents the computational efficiency (CE) of differ-

ent pipeline designs. What CE denotes is the number of 32-bit in-

structions performed per second permm2 on a chip. SDMP achieves

about 180 GOPS/mm2 on average. In MSRA-3, CE shrinks down-

ward to only 32GOPS/mm2. The CE of TDMP is higher than SDMP.

Compared to both TDMP and SDMP, HUBPA achieves an improve-

ment of 400 GOPS/mm2 CE. When the neural network becomes

larger and deeper, the CE degrades in all these three architecture.

However, HUBPA can obtain a high CE, and the improvement of

HUBPA even increases when the network becomes deeper.

G
O

PS
/m

m2

0

100

200

300

400 TDMP SDMP HUBPA

Figure 9: Comparisons on computational cost efficiency. The

left axis corresponds GOPS/mm2

Energy Efficiency. Fig. 10 represents the energy efficiency of

different architectural designs. The energy efficiency is the number

of 32-bit operations performed per second per waltz (W). From

Fig. 10, the power efficiency results of TDMP and SDMP are similar,

but the HUBPA chip is improved about 1.5×.

G
O

PS
/W

0

100

200

300

400 TDMP SDMP HUBPA

Figure 10: Comparisons on Energy Efficiency across various

CNNs

6 CONCLUSION

ReRAM-based pipeline architecture with high energy and cost ef-

ficiency is promising to meet the demand for the deployments of

CNNs in both edge and cloud computing. Our proposed bidirec-

tional pipeline architecture, HUBPA, substantially improves the

performance and energy efficiency for CNN training. We propose

a novel dynamic context switching mechanism that the forward

and backward propagation can share the computing resource in

the time dimension and thus enhance the utilization of the comput-

ing resources. CNN deployment algorithm, cooperative switching

scheme, and hardware support are described. The experimental

results show our proposed architecture achieves 1.7× computing

resource utilization and 1.5× energy efficiency in average compared

with the state-of-the-art ReRAM-based pipeline architecture. This

work also provides the efficient computing power for new learning

paradigms, such as “semi-supervised learning” and “reinforcement

learning” on edge.

ACKNOWLEDGEMENTS

This research was partially supported by National Natural Sci-

ence Foundation of China (Grant No. 61834006, 61602300,61772331),

Shanghai Science and Technology Committee(No.18ZR1421400),

Shanghai Jiao Tong University Biomedical Engineering Research

Foundation(No.YG2015MS17), Shanghai clinical ability construction

of The three grade hospital(No.SHDC12015904).

REFERENCES
[1] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A spatial architec-

ture for energy-efficient dataflow for convolutional neural networks. In ACM
SIGARCH Computer Architecture News, Vol. 44. IEEE Press, 367–379.

[2] Jeffrey Dean et al. 2012. Large scale distributed deep networks. In Advances in
neural information processing systems. 1223–1231.

[3] Xiangyu Dong et al. 2014. NVSim: A circuit-level performance, energy, and area
model for emerging non-volatile memory. In Emerging Memory Technologies.
Springer, 15–50.

[4] Diederik P. Kingma et al. 2014. Semi-Supervised Learning with Deep Generative
Models. In NIPS.

[5] Krizhevsky et al. 2012. ImageNet classification with deep convolutional neural
networks. In NIPS. 1097–1105.

[6] Kaiming He et al. 2016. Deep Residual Learning for Image Recognition. In CVPR.
770–778.

[7] Shankar et al. 2017. Reinforcement Learning via Recurrent Convolutional Neural
Networks. In International Conference on Pattern Recognition. 2592–2597.

[8] He Kaiming et al. 2015. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision. 1026–1034.

[9] Boris Murmann. 2017. ADC performance survey 1997-2017.
https://web.stanford.edu/ murmann/adcsurvey.html (2017).

[10] Augustus Odena, Christopher Olah, and Jonathon Shlens. 2017. Conditional
Image Synthesis With Auxiliary Classifier GANs. In ICML.

[11] Brandon Reagen et al. 2016. Minerva: Enabling low-power, highly-accurate deep
neural network accelerators. In Proceedings of the 43rd International Symposium
on Computer Architecture. IEEE Press, 267–278.

[12] Minsoo Rhu et al. 2016. vDNN: Virtualized deep neural networks for scalable,
memory-efficient neural network design. In Microarchitecture (MICRO), 2016.
IEEE, 1–13.

[13] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. 2011. DRAMSim2: A Cycle
Accurate Memory System Simulator. IEEE Computer Architecture Letters 10 (2011),
16–19.

[14] Olga Russakovsky et al. 2015. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision 115 (2015), 211–252.

[15] Ali Shafiee et al. 2016. ISAAC: A convolutional neural network accelerator with
in-situ analog arithmetic in crossbars. In Proceedings of the 43rd International
Symposium on Computer Architecture. IEEE Press, 14–26.

[16] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[17] Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen. 2017. PipeLayer: A pipelined
ReRAM-based accelerator for deep learning. In High Performance Computer
Architecture (HPCA), 2017 IEEE International Symposium on. IEEE, 541–552.

[18] C. Xu et al. 2015. Overcoming the challenges of crossbar resistive memory
architectures. In HPCA.

[19] C. Xu, X. Dong, N. P. Jouppi, and Y. Xie. 2011. Design implications of memristor-
based RRAM cross-point structures. In DATE. 1–6. https://doi.org/10.1109/DATE.
2011.5763125

