
Speculation Invariance (InvarSpec): Faster Safe
Execution Through Program Analysis

Zirui Neil Zhao∗, Houxiang Ji∗, Mengjia Yan†, Jiyong Yu∗, Christopher W. Fletcher∗,
Adam Morrison‡, Darko Marinov∗, Josep Torrellas∗

∗University of Illinois at Urbana-Champaign †Massachusetts Institute of Technology ‡Tel Aviv University
{ziruiz6, hj14}@illinois.edu, mengjiay@mit.edu, {jiyongy2, cwfletch}@illinois.edu,

mad@cs.tau.ac.il, {marinov, torrella}@illinois.edu

Abstract—Many hardware-based defense schemes against
speculative execution attacks use special mechanisms to protect
instructions while speculative, and lift the mechanisms when
the instructions turn non-speculative. In this paper, we observe
that speculative instructions can sometimes become Speculation
Invariant before turning non-speculative. Speculation invariance
means that (i) whether the instruction will execute and (ii) the
instruction’s operands are not a function of speculative state.
Hence, we propose to lift the protection mechanisms on these
instructions early, when they become speculation invariant, and
issue them without protection. As a result, we improve the
performance of the defense schemes without changing their
security properties.

To exploit speculation invariance, we present the InvarSpec
framework. InvarSpec includes a program analysis pass that
identifies, for each relevant instruction i, the set of older in-
structions that are Safe for i—i.e., those that do not prevent i
from becoming speculation invariant. At runtime, the InvarSpec
micro-architecture loads this information and uses it to determine
when speculative instructions can be issued without protection.
InvarSpec is one of the first defense schemes for speculative
execution that combines cooperative compiler and hardware
mechanisms. Our evaluation shows that InvarSpec effectively
reduces the execution overhead of hardware defense schemes. For
example, on SPEC17, it reduces the average execution overhead
of fence protections from 195.3% to 108.2%, of Delay-On-Miss
from 39.5% to 24.4%, and of InvisiSpec from 15.4% to 10.9%.

Index Terms—Speculative execution defense, Program analysis,
Speculation

I. INTRODUCTION

Speculative execution attacks [5], [9], [16], [23], [24], [25],

[28], [31], [40], [44], [49] exploit a fundamental vulnerability

of modern computer architectures. In these attacks, attack-

ers craft sequences of transient instructions—those that are

fetched and executed but do not commit—that leak informa-

tion by changing the state of structures such as caches.

Since the initial vulnerability disclosures, there has been a

flurry of work to block these attacks with a range of schemes

that vary in complexity and performance overhead (e.g., [1],

[2], [4], [8], [17], [20], [22], [26], [37], [38], [42], [43], [51],

[53]). On the one hand, there are software schemes such as

load hardening [8]. These schemes are simple to implement

but have high overhead and, typically, limited coverage. On

the other hand, there are many hardware proposals (e.g., [1],

[4], [20], [22], [26], [37], [38], [42], [51], [53]), which have

lower performance overhead. Within these schemes, there is

a range of solutions with different emphases on complexity

versus performance overhead. At this point, it is unclear which

schemes will be adopted commercially. However, it is likely

that whatever solutions are adopted, they will have to carefully

balance coverage, complexity, and performance overhead.

Several of these hardware schemes rely on special mecha-

nisms that protect instructions while they are speculative; when

the instructions turn non-speculative, the protections are lifted.

For example, speculative loads in InvisiSpec [51] are issued

invisibly and are followed-up later with a second memory

access. As another example, speculative loads in Delay-On-

Miss (DOM) [26], [38] are allowed to access only the L1

cache; when the loads become non-speculative, they can

access other cache levels. Finally, in a basic defense scheme

that places fences to prevent the execution of speculative

instructions, such fences can be removed as the instructions

become non-speculative.

In this class of schemes, lifting the hardware protection

earlier, while the instruction is still speculative, would increase

the scheme’s performance. For example, in InvisiSpec, the

second memory access would be issued sooner or sometimes

not at all; in DOM, loads would be stalled on L1 misses

for shorter periods or sometimes not at all; in fence-based

schemes, instructions would be stalled on fences for shorter

time or sometimes not at all.

In this paper, we make the observation that a speculative

instruction can become Speculation Invariant at some point be-

fore turning non-speculative. By this, we mean that speculative

instruction i reaches a point when (i) whether i will execute

is not a function of speculative state, and (ii) the operands of

i are not a function of speculative state. When a speculative

instruction is speculation invariant and its operands are ready,

we say it reaches its Execution-Safe Point (ESP).

Figure 1 shows two simple examples of speculation invari-

ant loads. Consider the Futuristic threat model [51], where all

instructions remain speculative—and therefore squashable —

until they reach the Reorder Buffer (ROB) head. Figure 1(a)

shows a speculative load following an unresolved branch

where the load address x is not dependent on any of the two

branch paths. We say that ld x is speculation invariant and,

as soon as x is ready, speculative ld x reaches its ESP. No

1138

2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)

978-1-7281-7383-2/20/$31.00 ©2020 IEEE
DOI 10.1109/MICRO50266.2020.00094

Authorized licensed use limited to: University of Illinois. Downloaded on February 19,2024 at 21:38:54 UTC from IEEE Xplore. Restrictions apply.

matter which direction the branch finally takes, ld x will always

execute and access the same address. Figure 1(b) shows the

same speculative load following an earlier load whose return

data y does not directly or indirectly affect the register that ld x
uses to generate the x address. Once again, ld x is speculation

invariant and, as soon as x is ready, ld x reaches its ESP.

ld x

y = ld

ld x

(b)(a)

Then
Path

Branch

Else
Path

Fig. 1: Examples of speculation invariance.

When a speculative instruction reaches its ESP, we propose

to lift any protection and execute the instruction. In the previ-

ous examples, we propose to send the load request to memory

without protection. With this strategy, the performance of

any of the previous protection schemes will improve. At

the same time, the protection schemes’ security properties

will not change: executing a speculation invariant instruction

without protection will not reveal any more secrets than the

underlying hardware protection scheme would reveal with the

non-speculative execution of the instruction.

Unfortunately, hardware structures alone cannot exploit

these insights because the hardware is only aware of the

current speculative path being executed and does not reason

about all possible paths. Instead, we need a program analysis

infrastructure to analyze the program and inform the hardware

of the speculation invariance of instructions.

In this paper, we introduce InvarSpec, a framework to

exploit speculation invariance for higher performance without

hurting security. InvarSpec includes a program analysis pass

that identifies, for each instruction i under protection, the set

of older instructions (e.g., the branch and the load y = ld in

Figure 1) that are Safe for i—i.e., those instructions that do not

prevent i from becoming speculation invariant. At runtime, the

InvarSpec micro-architecture loads this information and uses

it to identify when speculative instructions can execute early,

without protection.

InvarSpec is one of the first defense schemes against spec-

ulative execution attacks that combines cooperative compiler

and hardware mechanisms. It consists of an analysis pass for

binaries, currently implemented for x86 binaries, and pipeline

micro-architecture that uses this information at runtime.

To evaluate InvarSpec, we apply its analysis pass on

the SPEC17 and SPEC06 programs and model its micro-

architecture in a cycle-level simulator. Our results show that

InvarSpec is effective. On average, using InvarSpec reduces

the execution overhead of fence-based protection from 195.3%

to 108.2%, the execution overhead of DOM from 39.5% to

24.4%, and the execution overhead of InvisiSpec from 15.4%

to 10.9%.

In summary, the paper makes the following contributions:

• Presents Speculation Invariance to improve the perfor-

mance of hardware security schemes against speculative

execution attacks without hurting their security properties.

• Develops and evaluates the InvarSpec analysis pass.

• Develops the InvarSpec micro-architecture and uses it, to-

gether with the analysis pass, to improve the performance

of three existing hardware security schemes.

II. BACKGROUND & KEY CONCEPTS

A. Speculative Execution Attacks

Transient instructions. On an out-of-order processor, some

instructions may execute but not subsequently commit; they

get squashed and the processor state is rolled back to before

their execution. These bound-to-squash instructions are called

transient. For example, an instruction may be transient due to

being in the shadow of a branch misprediction.

Attack structure. In a speculative execution attack, an at-

tacker exploits the side-effects of transient instructions to learn

information it would not be able to learn from a non-transient

correct execution. A typical attack consists of a transient

load accessing some secret value, which is then forwarded to

transmitter instruction(s) (or transmitters) that leak the secret

over a covert channel [22], [53]. These steps are collectively

referred to as a disclosure gadget [19].

In general, a transmitter is any instruction whose execution

creates operand-dependent micro-architectural resource usage

that reveals the operand (even if only partially) [19], [22], [53].

The prototypical example is a load instruction, which causes

address-dependent changes to the state of the cache hierarchy

by filling and evicting cache lines. As a result, the cache line

accessed by the load can be inferred using techniques such as

FLUSH+RELOAD [52] or PRIME+PROBE [34].

Figure 2 shows Spectre V1 [24], an example of a transient

execution disclosure gadget. It exploits the misprediction of a

bounds-checking branch to perform an out-of-bounds array

load (Line 2), which can read a secret from any memory

location. A transmit load then leaks the secret (Line 3).

1 if (x < array1 size) { // mispredicted branch
2 uint8 s = array1 [x]; // access load
3 uint8 y = array2 [s ∗ 64]; // transmit load
4 }

Fig. 2: Spectre V1.

Security violations. Attacks are categorized by the relation-

ship between the hardware protection domains of the disclo-

sure gadget and the victim [19]. In a domain-bypass attack,

the gadget and victim are in different domains. An example

is Meltdown [28], where a userspace process reads OS kernel

memory. In a cross-domain attack, the gadget resides in the

victim’s domain (which differs from the attacker’s domain,

which is from where the attacker monitors the covert channel).

An example is a network server whose code inadvertently

contains a Spectre gadget that can be passed a malicious

1139

Authorized licensed use limited to: University of Illinois. Downloaded on February 19,2024 at 21:38:54 UTC from IEEE Xplore. Restrictions apply.

input [24]. Finally, in an in-domain attack, the attacker cir-

cumvents software sandboxing. For example, an array access

in JavaScript (compiled by a browser) is subject to a bounds

check, producing code such as in Figure 2. Mispredicting the

bounds check allows the attacker to circumvent the bounds

check.

B. Hardware Defenses

To defend against speculative execution attacks, researchers

have proposed hardware-based schemes. Several of these

schemes (at least [1], [20], [26], [38], [51]) share a common

general approach. First, they deploy a hardware mechanism

that protects the relevant transmitter instructions. This protec-

tion prevents a transmitter from leaking its operands, blocking

the side channel. However, it imposes a performance cost.

Later, the protection is lifted when the transmitter’s operands

become safe to reveal. This execution point is called the

instruction’s Visibility Point (VP) [51]. When an instruction

reaches the VP depends on the scheme’s threat model, i.e.,

which types of transient instructions it considers.

Threat models. A popular but weak threat model is the

Spectre model. It only considers transient instructions caused

by incorrect control flow. An instruction reaches its VP when

all of its older control-flow instructions have resolved. Another

model is the Futuristic model [51], which we rename to the

more descriptive name Comprehensive model. This model

considers transient instructions caused by all types of squashes.

An instruction reaches its VP only when it cannot be squashed

anymore, which is most often when it reaches the ROB head.

In this paper, we use the Comprehensive model.

Protection mechanisms. Most defense schemes target cache

and TLB-based side channels. They typically apply a variety

of protection mechanisms to loads. For example, InvisiS-

pec [51] and SafeSpec [20] issue speculative loads invisibly.

CleanupSpec [37] records the state generated by speculative

loads, to be able to undo it on a squash. DOM [26], [38]

delays speculative loads that miss in the L1 cache, but allows

L1-hitting speculative loads to execute. CSF [42] prevents

speculative loads from changing visible cache state by in-

serting stalling fences. All of these mechanisms introduce

performance overhead.

III. SPECULATION INVARIANCE

A. Main Idea

As pointed out above, several defense schemes (at least [1],

[20], [26], [38], [51]) use hardware mechanisms to block

leakage while a transmitter is potentially transient and thus

unsafe. If one could disable such mechanisms before the

transmitter reaches its VP and, therefore, execute the trans-

mitter speculatively without protection, one would reduce the

overhead of these defense schemes.

In this paper, we propose a combined compiler and hard-

ware scheme called InvarSpec that allows the lifting of these

protection mechanisms for speculative instructions. The key

idea is to identify Speculation Invariant instructions and allow

them to execute while speculative without protection.

A speculative instruction i becomes Speculation Invariant
when (i) whether i will execute is not a function of specu-

lative state, and (ii) the operands of i are not a function of

speculative state. When an instruction is speculation invariant

and its operands are ready, we say that the instruction reaches

its Execution-Safe Point (ESP).

Intuitively, ESP is the earliest point when speculative in-

struction i can execute and is guaranteed to eventually commit

using the exact same operands—no matter how many times it

is squashed by older instructions due to incorrect speculation.

At an instruction’s ESP, InvarSpec permits its speculative

execution without protection.

Since the definition of speculative instruction depends on

the threat model (e.g., Spectre or Comprehensive as defined

in Section II-B), speculation invariance and ESP for an in-

struction depend on the threat model. For example, assume

that the branch in Figure 1(a) is unresolved and that there is

no unresolved branch between the two loads in Figure 1(b).

In Figure 1(a), ld x is speculation invariant under both Spectre

and Comprehensive; in Figure 1(b), ld x is only speculative

(and speculation invariant) under Comprehensive.

Figure 3(a) shows four points in the lifetime of a load

instruction—which we use as a representative transmitter.

Time increases to the right. The Ready point is when the

load operands become available and the load is ready to

be sent to memory speculatively. Current defense schemes

place restrictions on what the load can do at this point.

Sometime later, the load becomes speculation invariant and

reaches its ESP. At this point, with InvarSpec, the load can

be sent to memory without protection. Later, the load reaches

its VP, where it becomes non-speculative and can be safely

sent to memory without protection. Finally, the load retires.

Effectively, InvarSpec moves the safe point of sending the

load to memory from VP to ESP, reducing the overhead of

the defense mechanism.

Transmitter:

Execution Visibility

Load becomes non−speculative

Load retires

VP RetireESPReady

(a)

Safe Point Point

Possible squashes

Time

Timeline of a load instruction

based on the threat model

under InvarSpec
Load can be sent to memory

Load is ready to be sent to memory
(speculatively)

Reg = ld x

ld 0(Reg)

of x
Inval

(b)

Squashing
Instruction:

Fig. 3: Supporting speculation invariance.

According to the threat model that we use (Section IV),

it is safe to expose the side effects of a speculation invariant

instruction. Its execution does not reveal any more secrets than

1140

Authorized licensed use limited to: University of Illinois. Downloaded on February 19,2024 at 21:38:54 UTC from IEEE Xplore. Restrictions apply.

the underlying hardware defense scheme would reveal with the

non-speculative execution of the instruction.

B. Definitions

The InvarSpec framework has two important types of

instructions: Transmitters and Squashing ones. Transmitters

(e.g., loads) are inherited from the defense scheme that In-

varSpec augments. Squashing instructions are those that can

cause squashes that may lead to security violations. Squashing

instructions are defined by the threat model. For the Spectre

model, they are branches; for the Comprehensive model, they

are branches, loads, and any instructions capable of causing

exceptions. For example, a load may be squashed on reception

of an invalidation for the address that it loaded, due to the

processor’s memory consistency mechanisms.

In this paper, we use loads as the transmitters and apply the

Comprehensive model. In addition, we focus our analysis on

the most challenging squashing instructions: branches (which

can be mispredicted) and loads (which may be involved in

exceptions or consistency violations and, on re-execution, can

read a new value). Instructions other than loads may also be

involved in squashes due to exceptions, but they are much

easier to handle. We discuss exceptions in Section III-E.

Any instruction i that follows a squashing one and that

has executed speculatively, may have to be squashed. Only

if i had reached its ESP when it executed, it is guaranteed

that, even after the squash, i will be re-executed and will use

the same operands. For this reason, in InvarSpec, it is key to

identify when a transmitter reaches its ESP. Only then can the

transmitter execute without protection.

If InvarSpec only uses hardware support to identify when

a transmitter reaches its ESP, it produces conservative results.

The hardware uses the following algorithm.

A transmit instruction i reaches its ESP when its operands

are ready and each of its older squashing instructions in the

ROB has: (i) executed and (ii) produced its final result. As

a shorthand for conditions (i) and (ii), we will say that the

older squashing instruction has reached its Outcome Safe
Point (OSP)—i.e., the point where its result will not change

irrespective of any future squashes.

When has an executed squashing instruction “produced its

final result”? If we do not consider loads, we can say that non-

load squashing instructions have produced their final result

when all older branches have resolved. However, loads work

differently. A load may reach its ESP (because it is also a

transmitter) and execute, then get squashed, and then, as it

re-executes with the same operand (i.e., the memory address),

it may read a different value from memory—if another thread

has written to the same location in between. An example is

shown in Figure 3(b), where ld x reads a value into Reg,

then gets squashed by an invalidation of x and then, as it re-

executes, reads a different value from location x. Consequently,

for a load to reach its OSP, it has to reach its ESP, execute,

and then reach a point where it cannot be squashed anymore—

typically, the ROB head.

Therefore, for the TSO-based x86 architecture and squash-

ing instructions that we consider, the condition for an executed

squashing instruction i to reach its OSP is as follows. First,

if i is not a load, i reaches its OSP when (i) all the older

branches in the ROB are resolved and (ii) there is at most one

older load in the ROB, which is at a point where it cannot be

squashed anymore. Second, if i is a load, i reaches its OSP

when is at a point in the ROB where it cannot be squashed

anymore. As indicated before, under the Comprehensive threat

model, loads cannot be squashed anymore only when they are

at the ROB head.

The appendix describes how to handle store-load aliasing.

C. Using Program Analysis Information

A program analysis pass can help the hardware algorithm

just described to be more aggressive. It can identify, for each

transmitter, the set of older squashing instructions that are Safe
for the transmitter.

Safe instructions for an instruction i are older squashing in-

structions that, even if they have not executed and generated

their final result (i.e., they have not reached their OSP), they

cannot prevent i from becoming speculation invariant.

Intuitively, the transmitter can become speculation invariant

despite the fact that these older squashing instructions have

not yet completed. Consequently, the hardware does not need
to consider them when determining whether the transmitter is

speculation invariant.

What are safe branches and safe loads for the x86 architec-

ture? For a given load i, safe branches are those whose out-

come cannot affect whether i will execute and what operands

i will use. An example was shown in Figure 1(a). For a

given load i, safe loads are those whose return data cannot

affect directly or indirectly the address that i loads from. An

example was shown in Figure 1(b). If, instead, load i is control

dependent on a branch or data dependent on a load, then the

branch or load is not safe for i.
The InvarSpec framework includes an analysis pass that

takes a source or executable program and determines, for each

transmitter, the set of safe squashing instructions. It then places

these instructions’ program counters (PCs) in a Safe Set (SS)

for the transmitter.

At runtime, when a transmitter is about to execute and the

InvarSpec hardware wants to determine whether the transmitter

has reached its ESP, the hardware computes the ESP condition

described in the box of Section III-B. However, the hardware

also reads the transmitter’s SS and prunes from the compu-

tation all of the squashing instructions in the ROB that are

in the SS of the transmitter. Specifically, older branches and

loads that are in the SS do not need to have reached their OSP

for the hardware to conclude that the transmitter has reached

its ESP. As a result, the transmitter reaches its ESP sooner and

can execute sooner.

Finally, from this discussion, it is clear that we want the

squashing instructions j that are not in the SS of the transmitter

to reach their OSP as soon as possible. Sadly, each of them

1141

Authorized licensed use limited to: University of Illinois. Downloaded on February 19,2024 at 21:38:54 UTC from IEEE Xplore. Restrictions apply.

needs to fulfill the conditions listed on Section III-B, which

require that even older squashing instructions execute and

reach their OSP. Fortunately, we can speed-up this process

if we also generate the SS for each squashing instruction j.
Any instruction in j’s SS can be disregarded as we compute

the conditions for j to reach its OSP. With this insight, we

help j reach its OSP sooner. Hence, InvarSpec also builds the

SS for squashing instructions.

D. The Complete InvarSpec Framework

The InvarSpec framework has two parts: (i) an analysis pass

that generates the SS for transmit and squashing instructions,

and (ii) hardware that, at runtime, loads the SSs and computes

the ESP conditions. The analysis has two levels of support.

The first one, called Baseline, populates the SS of instruction

i with only those squashing instructions that are safe for i no

matter what execution path the program takes.

The second level, called Enhanced, is more aggressive. It

additionally places in the SS of i some squashing instructions

that are not safe for some execution paths—as long as the

hardware can detect when these paths are executed and prevent

i from being executed until i is indeed speculation invariant.

With this support, when the other paths are followed, i can be

executed earlier. Enhanced improves the analysis by exploiting

dynamic path execution behavior.

E. Handling Exceptions

Branches and loads are challenging instructions because,

when they cause or are involved in a squash, they may change

(i) what subsequent program instructions execute, and (ii) what

operand values such subsequent instructions take.

Consider now exceptions. We assume an environment with

no self-modifying code and no attacker-tampered executable.

Here, there are two cases to consider. One is when the OS

is able to service the exception and resume the program

execution. The second case is when the exception causes

program termination.

For the first case, InvarSpec’s analysis only considers ex-

ceptions that involve the re-execution of loads, since loads

may read a new value on re-execution. When only non-load

instructions are involved, the re-execution after the exception

is the same as the execution before. Hence, non-loads involved

in exceptions do not need to be considered by InvarSpec.

The second case is when the exception causes program

termination. In this case, we argue that no harm occurs from

executing any speculation invariant transmitters that appear

after the excepting instruction in program order. The reason is

that such instructions are, by definition, control- and data-flow

independent of the excepting instruction. As a result, unless

the programmer or compiler explicitly places a fence in the

code, the programmer can have no expectation about their

execution order with respect to the excepting instruction—

e.g., a different compiler could have hoisted these speculation

invariant transmitters above the excepting instruction. Over-

all, program-termination exceptions do not affect InvarSpec’s

analysis either.

In summary, InvarSpec’s analysis only needs to be con-

cerned with exceptions that involve the re-execution of loads

and are non terminating. Hence, the analysis of squashing

instructions is limited to branches (which mispredict) and

loads (which are involved in non-terminating exceptions and

consistency violations).

IV. THREAT MODEL

InvarSpec inherits the transmitters and the threat model from

the hardware defense scheme that it augments. In this paper,

we augment defense schemes that use loads as the transmitters

and Comprehensive as the threat model (Section II-B). As

indicated above, in this threat model, the analysis only needs to

focus on two types of squashing instructions: branches (which

can mispredict) and loads (which can re-load a new value

after a non-terminating exception or a memory consistency

violation—i.e., when certain speculatively loaded data receives

an invalidation or suffers a cache eviction). The other type

of instructions involved in exceptions are handled by existing

hardware and the OS. In our model, victim and attacker can

run on different cores or on different SMT contexts of a core.

InvarSpec allows speculative transmitters that are specu-

lation invariant to execute speculatively without protection.

InvarSpec is secure because it does not change the security

properties of the defense scheme that it augments. Indeed, the

execution of these speculative instructions does not reveal any

more information than the underlying defense scheme would

reveal with the non-speculative execution of the instructions.

We are expressly not considering attacks where the exact

timing of when these speculative instructions execute would

create a side channel. The defense schemes discussed [1], [20],

[26], [38], [51] use the same assumption.

We assume that the SS information generated by the anal-

ysis pass for a program and attached to its executable is

correct (e.g., signed and checked for trusted binaries). This

is the case in the cross- and in-domain settings (Section II).

In these settings, the victim is compiled by a benign compiler

that generates a correct SS. In contrast, in the domain-bypass

setting, the program itself is malicious. However, domain-

bypass attacks [28], [33], [39], [44], [45] exploit an imple-

mentation issue—deferred handling of exceptions—which is

fixed in upcoming processors [11], and so are not the focus

of forward-looking defenses. We consider them out of scope.

We further assume that a program’s SS information is not

tampered with. In the cross-domain setting, the victim has

no motivation to tamper with its own SS. In the in-domain

setting, the sandbox prevents any attacker-controlled code

from tampering with the SS (which would be computed or

verified by the sandbox’s trusted runtime system). Moreover,

the integrity of the SS in distributed software packages can

be verified together with the integrity of the entire package,

using well-established integrity verification techniques such as

digital signatures [10], [32]. In all of these cases, if an attacker

is able to tamper with the victim’s SS, then she is able to

modify the binary, which means that she can mount much

more harmful attacks than speculative execution attacks.

1142

Authorized licensed use limited to: University of Illinois. Downloaded on February 19,2024 at 21:38:54 UTC from IEEE Xplore. Restrictions apply.

V. THE INVARSPEC ANALYSIS PASS

InvarSpec includes an intra-procedural program analysis

pass that accepts as input a program in source code or binary.

Source code is preferred, since it allows a better analysis

because it contains more information. InvarSpec is also told

what kind of instructions are transmitters and squashing ones,

and the threat model. InvarSpec can support multiple threat

models and augment multiple hardware defense schemes.

The analysis pass generates, for each transmit and squashing

instruction i, the set of squashing instructions that are safe

for i. The program counters (PCs) of these safe squashing

instructions form the Safe Set (SS) for i. The InvarSpec pass

has two levels: the Baseline analysis and the more aggressive

Enhanced analysis. We consider each in turn.

A. Baseline Analysis

1) Basic Algorithm: InvarSpec starts by generating the

Program Dependence Graph (PDG) [12] of each procedure in

the program. The PDG represents the dependence relationships

among the instructions in the procedure. Each instruction is a

node, and a directed edge from node i to node j means that i
is directly control or data dependent on j. The edge is labeled

“CD” if it is a control dependence, or “DD” if it is a data

dependence.

The algorithm to generate the PDG of a procedure takes

as inputs the procedure’s control-flow graph (CFG) and data-

dependence graph (DDG). The DDG includes dependencies

through both registers and memory. For each instruction i, the

algorithm adds an outgoing edge to all the instructions d that

i directly depends on.

InvarSpec then computes the SS for each transmit and

squashing instruction in the procedure. Algorithm 1 shows the

pseudo-code for getSS, which computes the SS for instruction

i. getSS takes as inputs i and the CFG, DDG, and PDG of

the procedure. It first computes ancSI, which is the set of all

the squashing instructions that are ancestors of i in the CFG.

These are potential candidates for the SS. Then, Line 3 calls

getIDG, which computes the Instruction Dependence Graph

(IDG) of i.
The IDG of i is a subgraph of the PDG that includes i plus

all the instructions that may affect whether i executes or the

values of i’s source operands. Intuitively, the instructions in the

IDG should not be placed in the SS for i. If i is a load, the IDG

does not contain stores that may update the memory location
that i loads. Such stores are in the DDG because the DDG

captures all the data dependencies, including those that affect

the load’s result; such stores are not in the IDG because they

cannot affect whether i executes or the values of i’s operands.

getIDG first creates an empty IDG graph (Line 9). It then

adds to the graph all the instructions that i has direct control

dependence on or that i’s source operands have direct data

dependence on. Finally, for each such instruction, getIDG calls

addDescGraph, which adds to the IDG all the descendants of

the instruction in the PDG.

Back to getSS, Line 4 collects all the squashing instructions

from the IDG into deps; i itself is not in deps unless it depends

Algorithm 1: Computing the SS for an instruction.

1 Function getSS(i, CFG, DDG, PDG) is
2 ancSI←{a∈ getAnces(CFG, i) | isSquashInsn(a)}
3 IDG← getIDG(i, CFG, DDG, PDG)

4 deps←{d ∈ getDesc(IDG, i) | isSquashInsn(d)}
5 SS← ancSI \deps
6 return SS
7 end
8 Function getIDG(i, CFG, DDG, PDG) is
9 IDG← DirectedGraph()

10 for d in getCtrlDeps(CFG, i) do
11 addNode(IDG, d)
12 addEdge(IDG, i, d, “CD”)
13 addDescGraph(d, IDG, PDG)

14 end
15 for d in getDataDeps(DDG, i) do
16 if ¬(isLoad(i)∧ isStore(d)) then
17 addNode(IDG, d)
18 addEdge(IDG, i, d, “DD”)
19 addDescGraph(d, IDG, PDG)

20 end
21 end
22 end

on itself (due to a program loop). Finally, Line 5 subtracts deps
from ancSI. The result is the SS of i.

2) Procedure Calls: The InvarSpec analysis pass is intra-

procedural and, therefore, only considers dependencies inside

a procedure. Interactions between procedures are handled as

follows. First, consider a caller procedure. InvarSpec conser-

vatively assumes that the callee may modify any memory

location. Hence, InvarSpec treats a procedure call instruction

as a store that may alias with any subsequent loads. For

registers, InvarSpec uses calling conventions, which preserve

some register values.

Second, consider a callee procedure. The SS of an instruc-

tion does not contain PCs of squashing instructions outside

of the procedure. This design conservatively assumes that all

squashing instructions outside of the procedure are unsafe.

While this design is conservative, it is sound.

In a recursive procedure, the caller is the same as the

callee. In this case, more dependencies may exist between

instructions in the procedure than captured by our intra-

procedural analysis. To see why, consider Figure 4. In the

example, instruction ld x is a transmitter, and br is a squashing

instruction that we would prefer to be in the SS of ld x.

However, because the call is recursive, and the branch decides

whether the call is executed, the ld x in the callee depends on

the br in the caller. More generally, if a recursive procedure

call (Line 3) has a control dependence or a data dependence

(e.g., due to call arguments) on a squashing instruction, that

squashing instruction should not be placed in the SS of any

other instruction in the procedure.

Unfortunately, we cannot simply solve the problem via

1143

Authorized licensed use limited to: University of Illinois. Downloaded on February 19,2024 at 21:38:54 UTC from IEEE Xplore. Restrictions apply.

1 foo () {
2 if (...) { // br
3 foo () ; // call
4 }
5 ld x; // ld
6 }

Fig. 4: Code snippet with a recursive call.

program analysis: because of procedure pointers and indirect

recursive calls, it is typically hard to identify recursive func-

tions. Hence, we use hardware as follows. We still place the

above squashing instruction in the SS of ld x, but the hardware

places a fence at the beginning of each procedure. Such fence

only prevents the execution of subsequent transmitters until

the call instruction reaches the ROB head. With this support,

the callee is not affected by squashing instructions from the

caller. In practice, this support causes only a minor slowdown

to the code run with InvarSpec, since compilers typically inline

short functions in the caller. Our fence support handles not

only direct but also indirect recursion.
3) Soundness & Completeness of Analysis: Our analysis

labels squashing instructions as safe or unsafe. Soundness

considers whether an unsafe squashing instruction may be

labeled as safe, and completeness whether a safe squashing

instruction may not be labeled as such.
The InvarSpec analysis is sound because it closely follows

the definition of speculation invariance within procedures: no

execution path from a safe squashing instruction to a transmit-

ter can affect whether the transmitter executes or what source

operands it uses. When our analysis cannot determine all

execution paths, e.g., due to indirect jumps, it conservatively

does not place the squashing instruction in the SS.

The InvarSpec analysis is not complete, due to at least two

reasons. The first one is that it is not inter-procedural, which

would be expensive and potentially unsound. The second one

is the limitations of pointer-aliasing analysis. Incompleteness

hurts performance but not correctness.

B. Enhanced Analysis
1) Key Insight: The Baseline analysis considers all possible

dependencies when generating an SS. However, some of the

dependencies may not occur on all execution paths. If we could

neglect such dependencies, unless they really do occur, we

could make the SS bigger, which could lead to speed up.
To illustrate the problem, consider the code in Figure 5(a),

where ld3 is a transmitter. Assume that ld1 takes a long time to

execute (e.g., because z misses in the cache), while br resolves

quickly and, typically, is not taken. Figure 5(b) shows the IDG

of ld3. We see that ld3 has a data dependency on ld2; ld2 has

a control dependency on br and a data dependency on ld1.
Given this IDG, using InvarSpec’s Baseline analysis, ld3’s

SS will not contain ld2, br, or ld1 because they are in ld3’s

IDG. They can affect the execution of ld3. Hence, InvarSpec

will not send ld3 to memory until all three instructions have

reached their OSP.

Fig. 5: Code pattern that can be sped-up: (a) source code, (b)

IDG of transmitter ld3, and (c) pruned IDG of ld3 computed

by the Enhanced analysis.

However, consider the case when br quickly resolves as not
taken, and ld1 takes a long time to complete. In this case, ld3

is stalled by ld1, although ld3 has no runtime dependency on

ld1.

The root of this stall is that InvarSpec’s Baseline analysis

does not consider the true runtime dependencies (i.e., the

Baseline analysis is not flow/path-sensitive [14]). If, instead,

we consider the path taken, we can show that, since ld3

depends on ld1 only if ld2 appears in ROB (i.e., br is taken),

putting ld1 in ld3’s SS is actually safe.

Specifically, if br resolves and ld2 appears in the ROB,

ld2 effectively shields ld3 from ld1: ld3 will not be sent

to memory until ld2 reaches its OSP. By that time, ld1 has

reached its OSP. Hence, the scheme does not need to directly

check for ld1. Placing ld1 in ld3’s SS still results in a correct

execution.

If, instead, br resolves and ld2 does not appear in the ROB,

ld3 can safely execute without waiting for ld1. Hence, putting

ld1 in ld3’s SS keeps correctness and makes the execution

faster than with the Baseline analysis. Overall, in ld3’s IDG,

we can effectively remove the edge to ld1 (Figure 5(c)).

2) Understanding the Enhanced Analysis: Based on the

previous discussion, InvarSpec’s Enhanced algorithm involves

taking the IDG of an instruction i and removing some of

the squashing instructions. The squashing instructions that are

removed can be placed in the SS of i; the ones that remain

cannot.

To understand when a squashing instruction can be removed,

we need to understand when a squashing instruction shields

another. Specifically, given an instruction i that depends on a

squashing instruction j, which in turn depends on a squashing

instruction k, when does j shield i from k?

We have seen in Figure 5(b) that if the edge from j to

k is a data dependence, j shields i, and we can remove the

edge from j to k (i.e., the edge from ld2 to ld1). Instruction

i cannot reach its ESP until j reaches its OSP, and in turn

j cannot reach its ESP (let alone its OSP) until k reaches its

OSP. By the time j reaches its OSP, k cannot affect i anymore.

However, if the edge from j to k is a control dependence,

the behavior is different. An example is the edge from ld2 to

br in Figure 5(b). Branch br controls the value of x that ld3

uses: either the value returned by ld2 or not. ld3 cannot be

sent to memory until br has reached its OSP. If we removed

the edge from ld2 to br, ld3 would not wait for br’s OSP,

1144

Authorized licensed use limited to: University of Illinois. Downloaded on February 19,2024 at 21:38:54 UTC from IEEE Xplore. Restrictions apply.

which could cause an incorrect execution. Indeed, suppose we

remove it. Then, suppose that br mispredicts as not taken, and

hence ld2 is not in the ROB to shield ld3. In this case, ld3

would be incorrectly sent to memory before br reached its

OSP. Overall, the edge from ld2 to br cannot be removed and

br cannot be in ld3’s SS.

Consider now when the instruction i is control dependent

on a squashing instruction j, to find out what instructions

can j shield. Figure 6(a) shows an example code where ld2

is the transmitter. ld2 is control dependent on b2 which, in

turn, is control dependent on b1 and data dependent on ld1.

Figure 6(b) shows the corresponding IDG.

Fig. 6: Code pattern to show when edges can be removed.

In this example, b2 shields ld2 from ld1: b2 will not reach

its OSP until ld1 reaches its OSP, by which time ld2 does not

need to consider ld1. Hence, InvarSpec can remove the edge

from b2 to ld1 and put ld1 in ld2’s SS. The code will now run

faster if ld1 takes long to execute, b1 reaches its OSP quickly

and is not taken.

On the other hand, b2 does not shield ld2 from b1. If

we removed the edge from b2 to b1, ld2 would not wait

for b1’s OSP, which could cause an incorrect execution.

Indeed, suppose we remove the edge. Then, suppose that b1

mispredicts as not taken, and hence b2 is not in the ROB

to shield ld2. In this case, ld2 would be incorrectly sent to

memory before b1 reached its OSP. Hence, the b2 to b1 edge

needs to remain in the IDG, and b1 cannot be in ld2’s SS.

Figure 6(c) shows the resulting IDG.

Overall, outgoing DD edges from squashing instructions can

be removed, while CD edges cannot. The fundamental reason

is that runtime data dependencies are path-sensitive—i.e., they

are a function of the execution path followed. Control depen-

dencies are path-insensitive, in that they exist irrespective of

which of the two paths is taken by the execution.

If a DD edge starts from a non-squashing instruction, the

edge cannot be removed. This is because a non-squashing

instruction does not prevent a younger instruction from ex-

ecuting and, therefore, cannot shield it.

3) Enhanced Algorithm: Based on the previous discussion,

we now outline InvarSpec’s Enhanced analysis. Algorithm 2

shows the pseudo-code of function pruneIDG, which takes the

IDG of an instruction i and generates a pruned IDG for i. The

function traverses all the nodes in the IDG except i (the IDG

root). If an instruction in the IDG is squashing, we check its

outgoing edges. All the edges that are DD are removed.

The pruned IDG is then passed to function getSS of Algo-

rithm 1 to compute the SS of the instruction. Because some

squashing instructions are now unreachable in the pruned IDG,

the Enhanced algorithm places more instructions in the SS of

the instruction than the Baseline one. The result is a faster

execution of the program.

Algorithm 2: Pruning an IDG.

1 Function pruneIDG(IDG) is
2 for i in getNodes(IDG)\{getRoot(IDG)} do
3 if isSquashInsn(i) then
4 for e in getOutEdge(IDG, i) do
5 if isDataDep(e) then
6 removeEdge(IDG, e)
7 end
8 end
9 end

10 end
11 return IDG
12 end

C. Truncating the Safe Set

The SS of an instruction can contain the PCs of many

instructions. To keep the hardware simpler, we propose to

truncate the SS to a fixed size. For performance, we would

like to keep only ”the most useful” SS PCs. These are the

PCs of the safe squashing instructions that are the most likely

to be in the ROB when the transmitter enters the ROB. The

PCs of safe instructions that are far in dynamic execution and

thus already likely out of the ROB are less important to keep.

To find the most useful SS PCs for instruction i, the analysis

pass statically finds the shortest distance, measured in the

number of instructions in the function’s CFG, between each

safe squashing instruction and i. Then, it keeps in the SS the

N safe squashing instructions with the smallest distances. It

further removes those instructions whose distance is larger

than the size of the ROB. We call the scheme TruncN .

In the SS of an instruction i, each safe instruction is encoded

as the signed difference between the PC of the instruction and

the PC of i. We call them Offsets.

VI. THE INVARSPEC HARDWARE

To use the SS information, InvarSpec adds two micro-

architecture modules. One compares the SS of an instruction

to the older squashing instructions in the ROB; the other holds

the SS and brings it to the pipeline on demand. For the second

module, we present two possible designs.

A. Comparing the SS in the ROB

InvarSpec adds a hardware buffer in the pipeline that

contains an entry for each dynamic instruction i in the ROB

that is a transmitter (i.e., a load) or a squashing one (i.e., a load

or a branch). We call it the Inflight Buffer (IFB) (Figure 7).

Each IFB entry contains the following information for i: (i)

its PC, (ii) a bit T that tells that i is not a transmitter, (iii)

a Ready bitmask used to periodically check if i has become

speculation invariant (SI), (iv) a bit set when i becomes SI,

1145

Authorized licensed use limited to: University of Illinois. Downloaded on February 19,2024 at 21:38:54 UTC from IEEE Xplore. Restrictions apply.

and (v) a bit set when i reaches its OSP. The Ready bitmask

has as many bits as IFB entries.

Fig. 7: Hardware to use the SS in the ROB.

ROB entries have pointers to their corresponding IFB en-

tries. IFB entries are allocated and deallocated in program

order when the corresponding instruction is inserted in and

removed from the ROB, respectively. Both IFB and ROB are

circular buffers.

When a transmit or squashing instruction i is inserted in the

ROB, its SS is requested (1), as we will see in Section VI-B.

The offsets in the SS are summed-up to i’s PC, creating a set

of safe squashing instruction PCs (2). The resulting PCs are

compared to the PCs in the IFB entries that are both older

than i and belong to squashing instructions. Note that, in the

Comprehensive threat model that we use, transmit instructions

are also squashing ones. Hence, the PCs from the SS are

compared to the PCs in all the older IFB entries.

Based on these comparisons, the Ready bitmask in the IFB

entry for instruction i is set as follows. If IFB entry k has a

PC that matches one of the PCs obtained from the SS or has

the OSP bit set, we know that the entry cannot prevent i from

becoming speculation invariant (SI): either entry k belongs to a

safe squashing instruction or to an instruction that has already

reached its OSP. In either case, bit k in the Ready bitmask of

instruction i is set. Further, the bits for those IFB entries not

yet owned by any instructions, and for the entry owned by i,
are set. The only Ready bitmask bits of i that remain clear are

those for older squashing instructions that are not safe for i
and have not reached their OSP.

If i is not a transmitter (T =1), i can execute as soon as its

operands are ready. In our configuration, this is the case for

branches. Otherwise, i can only execute when it becomes SI

and its operands are ready. In either case, the hardware tries

to find when i becomes SI by checking, at every cycle, if the

IFB entries that caused Ready bitmask bits to remain clear do

set their OSP bit. As seen in Figure 7, this is done by simply

taking the OSP bits from all the IFB entries and bit-ORing

them with the Ready bitmask (3). When all the resulting

bits are set, it means that all the squashing instructions older

than i are either safe or have reached their OSP. At this point,

i has become SI and sets its SI bit. If i is a transmitter, it can

now execute as soon as its operands are ready.

After an instruction has satisfied the condition for its SI bit

to be set and has executed, the logic to set its OSP bit depends

on what type of instruction it is. Specifically, if it is a branch,

the hardware sets its OSP bit right away. If it is a load, setting

the OSP bit has to wait until the load reaches the point where

it cannot be squashed anymore based on the threat model. For

the Comprehensive model that we use, this is when the load

reaches the ROB head.

There are two corner cases that are easily solved. First,

if the IFB runs out of space, the ROB stops taking in new

instructions. Second, if the SS for instruction i is not yet in

the pipeline when i in inserted in the ROB, and there are

older entries in the IFB that have their OSP bit clear, the

hardware assumes that such entries are all unsafe. Hence, the

corresponding Ready bitmask bits remain clear.

B. Storing and Bringing the SS to the Pipeline

The InvarSpec pass generates the SSs for the Squashing

and Transmit Instructions (STIs) in the program. However,

a sizable fraction of the STIs have empty SSs. Hence, we

envision the InvarSpec pass to mark in the executable those

STIs that have a non-empty SS.

Logically, such a mark can be a set bit in the opcode of the

STI. In practice, in the x86 ISA, there is no such bit available.

Hence, we can use an approach that has been used by Intel

for lock elision: re-purpose a previously-ignored instruction

prefix to mark instructions [18]. Specifically, we can reuse

the XRELEASE prefix—which today is meaningful only for

stores—to mark that the prefixed STI (a load or a branch in

our case) does have an SS. This means that the encoding of

STIs with an SS grows by the 1-byte prefix.

This approach changes the executable, but maintains back-

ward compatibility. Because current processors ignore this

prefix for STIs, the new executable runs on any x86 machine.

With this support in place, we now focus on how to store

the SS and bring it to the pipeline on demand. We propose

two alternatives: a software-based solution that is simple but

makes the executable backward incompatible, and a hardware-

based solution that is more complex but keeps backward

compatibility. We outline each in turn, but we will only

evaluate the one that keeps backward compatibility.

Software-Based Solution. In this solution, the InvarSpec

analysis pass embeds the SS of an STI in the code of the

program, right after the STI. For example, the pass could

add an SS with 12 PC offsets of 10-bits each, for a total

of 15 bytes. As an STI with prefix is decoded, the decoding

hardware extracts the adjacent SS from the code stream. When

the STI is inserted in the ROB, its SS is readily available for

the operation 1 in Figure 7. This solution is simple but not

backward compatible.

Hardware-Based Solution. In this solution, the InvarSpec

analysis pass stores the SSs in data pages, and the core has

a small SS Cache that keeps the recently-used SSs close to

the pipeline for easy access in the future. Since the most

frequently-executed STIs are in loops, a small SS cache

typically captures the great majority of dynamic SSs needed.

1146

Authorized licensed use limited to: University of Illinois. Downloaded on February 19,2024 at 21:38:54 UTC from IEEE Xplore. Restrictions apply.

We propose a simple design where, for each page of code,

there is a data page at a fixed Virtual Address (VA) offset that

holds the SSs of the STIs in that page of code. Further, the VA

offset between each STI and its SS is fixed. This design does

increase the memory consumed by a program by potentially

the size of its instruction page working set (Section VIII-B).

However, it enables fast SS access.

Figure 8(a) shows a page of code and its SS page at a

fixed VA offset (Δ). When the former is brought into physical

memory, the latter is also brought in. The figure shows a

prefixed STI and its SS. If the distance between the VAs of

two consecutive prefixed STIs is less than the size of an SS,

one of the STIs loses the prefix.

the STI

+

1 2

Displacement
(Δ)

page

Addresses
Virtual

(a)

MissHit

SS for
SS

SS for

with Prefix

Δ

VA of the

To TLB

To pipeline

(b)

SS Cache

SS of

Prefix Code
page

STI

the STI

VA of STI

the STI

Fig. 8: Hardware solution to store and access the SS. In the

figure, STI means Squashing or Transmit Instruction.

Figure 8(b) shows the action taken when a prefixed STI is

decoded. The VA of the STI is sent to the SS cache (1).

The SS cache is a small, set-associative cache that contains

the most recently-used SSs. Due to the good locality of STIs

in loops, most of the time, the SS cache hits. In this case, it

provides the SS to the pipeline on time to be used when the

STI is inserted in the ROB.

On an SS miss, the STI’s VA is added to the Δ offset (2)

to obtain the VA of the SS. This address is sent to the TLB

to obtain the Physical Address (PA). After that, but only when
the STI reaches its Visibility Point (VP), a request is sent to

the cache hierarchy to obtain the SS, and bring it to the SS

cache. As a result, this STI is unable to use its SS; it will

be used in a future invocation of the same STI when the SS

request hits in the SS cache.

The SS cache does not introduce any side channel because

no side effect occurs until the STI reaches its VP. Specifically,

on an SS cache miss, we saw that the SS request is not

sent to the cache hierarchy until the STI’s VP, providing no

information to the attacker. On an SS cache hit, the SS cache’s

LRU bits are not updated until the STI reaches its VP.

VII. EXPERIMENTAL METHODOLOGY

Architectures Modeled. We model the architecture shown in

Table I using cycle-level simulations with Gem5 [6]. All the

side effects of transient instructions are modeled. Our baseline

architecture is a conventional processor with no protection

against speculative-execution attacks. We call it UNSAFE.

Parameter Value
Architecture 2.0 GHz out-of-order x86 core
Core 8-issue, no SMT, 62 load queue entries, 32

store queue entries, 192 ROB entries, TAGE
branch predictor, 4096 BTB entries, 16 RAS
entries

L1-I Cache 32 KB, 64 B line, 4-way, 2 cycle Round Trip
(RT) latency, 1 port, 1 hardware prefetcher

L1-D Cache 64 KB, 64 B line, 8-way, 2 cycle RT latency, 3
Rd/Wr ports, 1 hardware prefetcher

L2 Cache 2 MB, 64 B line, 16-way, 8 cycles RT latency
DRAM 50 ns RT latency after L2
SS Cache 64 sets, 4-way, 2 cycle RT latency, each entry

has 12 10-bit PC offsets (Trunc12). For 22nm:
area is 0.0088mm2, dyn. rd. energy is 2.95pJ,
leakage power is 2.31mW

IFB 76 entries. For 22nm: area is 0.0022mm2, dyn.
rd. energy is 0.99pJ, leakage power is 0.58mW

TABLE I: Parameters of the simulated architecture.

We augment this architecture with several hardware de-

fense schemes that use loads as the transmitters. We use

the Comprehensive threat model, with both branches and

loads as squashing instructions. The defense schemes are: (i)

delaying with fences all speculative loads until they reach their

Visibility Point (VP) [51] (FENCE); (ii) Delay-On-Miss, which

delays speculative loads that miss in L1 until their VP [26],

[38] (DOM); and (iii) InvisiSpec, which executes speculative

loads invisibly before their VP [51] (INVISISPEC). We model

these defense schemes as they are (D), augmented with the

Baseline InvarSpec analysis (D+SS), and augmented with

the Enhanced InvarSpec analysis (D+SS++). The resulting

configurations are shown in Table II.

Configuration Description
UNSAFE Unmodified x86 architecture
FENCE Delay all speculative loads with fences [51]
FENCE+SS FENCE augmented with Baseline InvarSpec
FENCE+SS++ FENCE augmented with Enhanced InvarSpec
DOM Delay speculative loads on L1 miss [26], [38]
DOM+SS DOM augmented with Baseline InvarSpec
DOM+SS++ DOM augmented with Enhanced InvarSpec
INVISISPEC Execute speculative loads invisibly [51]
INVISISPEC+SS INVISISPEC augmented with Baseline InvarSpec
INVISISPEC+SS++ INVISISPEC augmented with Enhanced InvarSpec

TABLE II: Defense configurations modeled.

Applications and Analysis Pass. We run SPEC17 [7] and

SPEC06 [15] applications with the reference input size. Be-

cause of simulation issues and binary analysis tool malfunc-

tion, we do not report on 2 applications out of 23 from SPEC17

and 4 out of 29 from SPEC06. For each application, we use

SimPoint [13] to generate up to 10 representative intervals

that accurately characterize the end-to-end performance of the

application. Each interval contains 50 million instructions. We

run Gem5 on each interval with system-call emulation mode

with 1 million warm-up instructions.

Our InvarSpec analysis pass implementation is based on

Radare2 [36], a state-of-the-art open-source binary analysis

1147

Authorized licensed use limited to: University of Illinois. Downloaded on February 19,2024 at 21:38:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 9: Execution time of the applications on different architecture configurations, all normalized to UNSAFE. The three plots

correspond, from top to bottom, to configurations related to the FENCE, DOM, and INVISISPEC defense schemes. Each plot

has a different Y-axis range.

tool. It is performed on x86 binaries. However, it can also be

implemented as a compiler pass and be performed on source

code during compilation.

VIII. EVALUATION

A. Overall Performance Results
Figure 9 shows the execution time of SPEC17 and SPEC06

applications on all the configurations of Table II. The three

plots correspond, from top to bottom, to configurations related

to the FENCE, DOM, and INVISISPEC defense schemes. Each

plot has a different Y-axis range. All bars are normalized

to UNSAFE. Each plot shows each SPEC17 application, the

average of SPEC17 applications, and the average of SPEC06

applications.
Going from top to bottom, we see that FENCE is the slowest

scheme among all schemes evaluated. On average, it has an

overhead of 195.3% on SPEC17 and 199.3% on SPEC06.

FENCE+SS++ reduces the average overhead significantly,

from 195.3% to 108.2% on SPEC17, and from 199.3% to

101.9% on SPEC06.
DOM exhibits a bimodal behavior on SPEC17 applications.

While it has low overhead on about half of the applications, its

overhead is very high on the rest. For example, the overhead is

169.6% on parest and 107.3% on bwaves. On average across

all applications, DOM’s overhead is 39.5% on SPEC17 and

46.1% on SPEC06. Adding support for Enhanced SS on top

of DOM (DOM+SS++) substantially reduces this overhead.

Enhanced SS is typically effective in the cases when DOM has

high overhead. Specifically, it brings down parest’s overhead

to 99.7% and bwaves’s to 21.8%. It does so by allowing

cache-missing loads that are speculation invariant to proceed—

rather than stalling them. On average, DOM+SS++ reduces

the execution overhead from 39.5% to 24.4% on SPEC17, and

from 46.1% to 22.3% on SPEC06.

INVISISPEC’s average overhead is 15.4% on SPEC17 and

18.0% on SPEC06. This overhead is lower than the corre-

sponding DOM overhead. INVISISPEC+SS++ speeds-up the

execution over INVISISPEC. On average, the overhead of

INVISISPEC+SS++ is only 10.9% on SPEC17 and 9.6% on

SPEC06. In INVISISPEC+SS++, when a speculative load is

ready to issue to memory, if it is speculation invariant, it is

issued to memory normally; in INVISISPEC, the load is issued

as an invisible load and hence requires two loads.

B. SS Analysis

We evaluate the performance impact of InvarSpec’s design

choices by conducting sensitivity studies for FENCE+SS++,

DOM+SS++, and INVISISPEC+SS++ on SPEC17.

SS coverage. One design decision is how many bits to use

to encode an SS offset, i.e., the distance between the PCs of

a safe instruction and a transmitter. This number affects how

many offsets an SS entry can encode.

Figure 10 shows the average normalized execution time of

the schemes on SPEC17 when varying the number of bits

per SS offset. The size of SS is fixed to 12 offsets. All data

are normalized to the corresponding base hardware scheme

(FENCE, DOM, and INVISISPEC). We see that, as the number

of bits decreases, the execution time increases with different

degrees. When the number of bits is smaller than 10, the

performance degradation becomes non-negligible. Thus, our

design uses 10 bits to encode an SS offset, which provides a

performance similar to the unlimited number of bits.

Truncation. Another design decision is the SS size, namely

the maximum number of SS offsets to keep in an SS entry.

1148

Authorized licensed use limited to: University of Illinois. Downloaded on February 19,2024 at 21:38:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 10: Normalized execution time when varying the number

of bits per SS offset. All execution times are normalized to

their corresponding base hardware schemes without InvarSpec.

Figure 11 shows the average normalized execution time of

the schemes with various SS sizes. Each SS offset is 10 bits.

All data are normalized as in Figure 10. We see that, as the

SS size increases, the execution time decreases. Compared

to an unlimited SS size, all truncation configurations have a

performance degradation. An SS size equal to 12 offsets is a

good design point and, therefore, is our default design.

Fig. 11: Normalized execution time when varying the SS size.

All execution times are normalized to their corresponding base

hardware schemes without InvarSpec.

SS Cache. Figure 12 characterizes the SS cache. It shows

the SS cache hit rate (right Y axis) and average normalized

execution time of the applications (left Y axis) for different

SS cache geometries. We compare our default configuration

(4-way set-associative with 64 sets) to geometries with the

same associativity but fewer or more sets. We also compare

to a fully-associative cache of the same size (256 lines). All

execution times are normalized as in Figure 10.

Increasing the SS cache size from our default configuration

only slightly decreases the execution time of DOM+SS++

and INVISISPEC+SS++, but FENCE+SS++’s execution time

keeps decreasing as the SS cache size grows. Decreasing the

SS cache size from our default configuration increases the

execution time of every scheme.

The average hit rate shows that the cache size is more

important than the associativity. Reducing the cache size for

the same associativity decreases the hit rate. However, for the

same size, increasing the associativity from 4 to full causes

a minimal change. Overall, our default design strikes a good

trade-off between performance and hardware complexity.

Fig. 12: Normalized execution time and SS cache hit rate when

changing the SS cache. Execution times are normalized to the

corresponding base hardware schemes without InvarSpec.

Memory Footprint. We measure that, on average, about half

of the code pages in an application have at least one non-empty

SS. To estimate an upper bound on the amount of memory

required to store this SS state at run time, we add-up all the

code pages in an application that have at least one non-empty

SS. In reality, not all of the SS pages may be in memory at

the same time. We call the resulting size the Conservative SS
Footprint. We also measure the peak memory usage of each

application with the reference input at any point in the program

execution. We call the resulting size the Peak Memory during
Execution.

Table III shows the two metrics for the 5 applications with

the largest conservative SS footprint, and the average metrics

across all SPEC17 applications. We can see that the memory

overhead of storing the SS state is negligible compared to the

peak memory that an application uses. The SS only causes a

0.55% memory overhead on average. For blender, which has

the largest SS footprint, the overhead is only 1.32%.

SPEC17 App. Conservative SS Peak Memory during
Footprint (MB) Execution (MB)

blender 8.24 626.31
perlbench 8.00 413.09

wrf 7.70 172.15
gcc 5.87 1277.55

cam4 5.27 853.91
SPEC17 Avg. 2.55 462.05

TABLE III: Assessing the memory footprint of the SS state.

C. Hardware Overhead

The main InvarSpec hardware is the SS cache and the IFB.

The SS cache is relatively simple because it stores only read-

only data. We used CACTI 7.0 [3] to estimate the area and

power of the storage component of these structures for 22nm

technology. As shown in Table I, the area, dynamic read

energy, and leakage power of the storage structures is small.

D. Discussion

Interaction with a JIT Compiler. Our scheme is compatible

with a JIT compilation environment. In this case, the dynamic

1149

Authorized licensed use limited to: University of Illinois. Downloaded on February 19,2024 at 21:38:54 UTC from IEEE Xplore. Restrictions apply.

generation of a binary is augmented with a step that runs the

InvarSpec analysis pass and generates the SSs. In practice,

this step does not take long because it substantially reuses

information that the compiler has just generated. We cannot

provide an accurate estimate of this extra execution time

because our implementation of the InvarSpec analysis pass

is not optimized.

Reducing Execution Overhead Further. There are several

approaches that could further reduce the execution overhead

with InvarSpec. Three that come to mind are to increase the

SS size, increase the SS cache size, and improve the Enhanced

compiler analysis. The first approach can only decrease the ex-

ecution overhead by a few percentage points. Indeed, Figure 11

showed the overhead with unlimited-sized SS entries, which is

an upper bound. The second approach also gives modest gains.

We have evaluated a configuration with an infinite SS cache

with unlimited-sized SS entries. The result is that FENCE+

SS++, DOM+SS++, and INVISISPEC+SS++ further reduce

the average execution overhead from 108.2% to 90.4%, from

24.4% to 21.8%, and from 10.9% to 10.2%, respectively.

The third approach, namely improving the Enhanced compiler

analysis, may deliver more significant gains, especially if

it involves adding inter-procedural analysis. Such approach

likely involves non-trivial effort, and is our future work.

IX. RELATED WORK

As indicated in Sections I and II-B, there are many de-

fense schemes against speculation attacks. Some are software

schemes, based on stopping speculation either with fences [2],

[17], [43] or by injecting data-dependencies into the code [8],

[43]. There are many hardware schemes (e.g., [1], [4], [20],

[22], [26], [37], [38], [42], [51], [53]). Of these hardware

schemes, many of those that do not consider timing attacks can

be extended to support InvarSpec (e.g., [1], [20], [26], [38],

[51]). InvarSpec enhances hardware techniques with software

information.

The STT [53], SpecShield [4], and NDA [48] hardware

schemes have a different threat model than those that Invar-

Spec extends in this paper. Indeed, the schemes in this paper

protect all data from being leaked by speculative execution;

STT, SpecShield, and NDA protect only data that is read by

mis-speculated execution, and consider data in retired register

file state not to be a secret.

To see the difference, consider the example in Figure 13.

In the example code, although secret would not be leaked

in a non-speculative execution, STT, SpecShield, and NDA

do not apply protection to the mis-speculated load(secret)

instruction, because secret was read into a register by a

bound-to-commit instruction. In contrast, the schemes that

InvarSpec extends in this paper do not allow performing the

load(secret) without protection before the branch resolves.

Despite this difference in protection scope, the main princi-

ple of InvarSpec to statically analyze code and dynamically

disable defense protection earlier could also be adapted to

extend schemes such as STT, SpecShield, and NDA.

1 secret = load(secret ptr) ; // soon to commit
2 if (...) { // mispredicted branch
3 load(secret) ;
4 }

Fig. 13: Example that exposes the difference between protect-

ing all data versus only speculatively-read data.

Finally, there are many designs that aim to block cache-

based covert channels, using randomization [30], [47], encryp-

tion [35], [50], cache partitioning [27], [41], [46], [47], or

other mechanisms [21], [29]. They do not address speculative

execution attacks.

X. CONCLUSION

This paper introduced Speculation Invariance, and showed

that it can be used to reduce the overhead of speculative

execution defenses without changing security properties. It

also presented the InvarSpec framework, which includes a

program analysis pass to identify Safe instructions, and micro-

architecture that uses this information to find and issue spec-

ulation invariant instructions earlier. InvarSpec is one of the

first defense schemes for speculative execution that combines

cooperative compiler and hardware mechanisms. It effectively

enhances hardware defense schemes: it reduces the average ex-

ecution overhead of fence protection from 195.3% to 108.2%,

of DOM from 39.5% to 24.4%, and of InvisiSpec from 15.4%

to 10.9%.

ACKNOWLEDGMENTS

This work was funded in part by Intel under an Intel

Strategic Research Alliance (ISRA) grant, NSF under grants

CNS 1956007, CNS 1763658, and CCF 1725734, Blavatnik

ICRC at TAU, and ISF under grant 2005/17. We thank Christos

Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jimborean,

and Magnus Själander for kindly sharing their code. We also

thank Dimitrios Skarlatos for his help in estimating hardware

overhead.

APPENDIX: STORE-TO-LOAD FORWARDING

When a load reaches its ESP and there is an older store,

we need to ensure that whether the store and the load alias is

invisible to an attacker. Otherwise, the attacker could deduce

the address of the load. Specifically, if store and load alias

and the load gets the data from the store, the attacker can

deduce the alias by not observing a load access to the cache

hierarchy. To solve this problem, we change the microarchi-

tecture slightly as follows. The load is always issued to the

cache hierarchy and if, at this point or later, the store address

is found to alias, the load gets the data from the store and

ignores the data returned from the cache hierarchy.
Relevant to InvarSpec is to understand when is the point

where a load reaches its OSP. Such point requires not only

that the load not be squashable anymore. In also requires that

all of its older stores have been resolved—and hence that the

load has been able to read the correct data, either from memory

or from a store. InvarSpec implements this algorithm.

1150

Authorized licensed use limited to: University of Illinois. Downloaded on February 19,2024 at 21:38:54 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. Ainsworth and T. Jones, “MuonTrap: Preventing Cross-Domain
Spectre-Like Attacks by Capturing Speculative State,” in International
Symposium on Computer Architecture (ISCA), May 2020.

[2] ARM, “Cache Speculation Side-channels,” https://developer.arm.com/
support/arm-security-updates/speculative-processor-vulnerability/
download-the-whitepaper, Oct. 2018.

[3] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee,
and V. Srinivas, “CACTI 7: New Tools for Interconnect Exploration
in Innovative Off-Chip Memories,” ACM Transactions on Architecture
and Code Optimization, vol. 14, no. 2, pp. 14:1–14:25, Jun. 2017.
[Online]. Available: http://doi.acm.org/10.1145/3085572

[4] K. Barber, A. Bacha, L. Zhou, Y. Zhang, and R. Teodorescu, “Spec-
Shield: Shielding Speculative Data from Microarchitectural Covert
Channels,” in International Conference on Parallel Architectures and
Compilation Techniques (PACT), September 2019.

[5] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus, “SMoTherSpectre: Exploiting
speculative execution through port contention,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security, 2019, pp. 785–800.

[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The Gem5
Simulator,” ACM SIGARCH Computer Architecture News, 2011.

[7] J. Bucek, K.-D. Lange, and J. v. Kistowski, “SPEC CPU2017: Next-
generation compute benchmark,” in Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering, 2018, pp. 41–42.

[8] C. Carruth, “Speculative Load Hardening,” https://llvm.org/docs/
SpeculativeLoadHardening.html, 2018.

[9] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “SgxPectre
Attacks: Leaking Enclave Secrets via Speculative Execution,” arXiv e-
prints, p. arXiv:1802.09085, Feb 2018.

[10] Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, and M. H.
Jakubowski, “Oblivious hashing: A stealthy software integrity verifi-
cation primitive,” in International Workshop on Information Hiding.
Springer, 2002, pp. 400–414.

[11] I. Cutress, “The Intel Second Generation Xeon Scalable: Cascade
Lake, Now with Up To 56-Cores and Optane!” AnandTech, Apr.
2019. [Online]. Available: https://www.anandtech.com/show/14146/
intel-xeon-scalable-cascade-lake-deep-dive-now-with-optane

[12] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence
graph and its use in optimization,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 9, no. 3, pp. 319–349, 1987.

[13] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster
and more flexible program phase analysis,” Journal of Instruction Level
Parallelism, vol. 7, no. 4, pp. 1–28, 2005.

[14] B. Hardekopf and C. Lin, “Flow-sensitive pointer analysis for millions
of lines of code,” in International Symposium on Code Generation and
Optimization (CGO 2011). IEEE, 2011, pp. 289–298.

[15] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” ACM
SIGARCH Computer Architecture News, 2006.

[16] J. Horn, “Speculative Store Bypass,” https://bugs.chromium.org/p/
project-zero/issues/detail?id=15282018.

[17] Intel, “Speculative Execution Side Channel Mitigations,”
https://software.intel.com/sites/default/files/managed/c5/63/336996-
Speculative-Execution-Side-Channel-Mitigations.pdf, 2018.

[18] ——, “Intel R© 64 and IA-32 Architectures Software Developer’s
Manual,” https://www.intel.com/content/dam/www/public/us/en/
documents/manuals/64-ia-32-architectures-software-developer-
instruction-set-reference-manual-325383.pdf, Feb. 2019.

[19] ——, “Refined Speculative Execution Terminology,” https://
software.intel.com/security-software-guidance/insights/refined-
speculative-execution-terminology, 2020.

[20] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Pono-
marev, and N. Abu-Ghazaleh, “SafeSpec: Banishing the Spectre of a
Meltdown with Leakage-Free Speculation,” in 2019 56th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2019, pp. 1–6.

[21] T. Kim, M. Peinado, and G. Mainar-Ruiz, “STEALTHMEM: System-
Level Protection Against Cache-Based Side Channel Attacks in the
Cloud,” in USENIX Security, 2012.

[22] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“DAWG: A defense against cache timing attacks in speculative execution
processors,” in 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2018, pp. 974–987.

[23] V. Kiriansky and C. Waldspurger, “Speculative Buffer Overflows: At-
tacks and Defenses,” arXiv e-prints, p. arXiv:1807.03757, Jul 2018.

[24] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher et al., “Spectre attacks: Exploit-
ing speculative execution,” in 2019 IEEE Symposium on Security and
Privacy (SP). IEEE, 2019, pp. 1–19.

[25] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,” in
12th USENIX Workshop on Offensive Technologies (WOOT 18), 2018.

[26] P. Li, L. Zhao, R. Hou, L. Zhang, and D. Meng, “Conditional spec-
ulation: An effective approach to safeguard out-of-order execution
against spectre attacks,” in 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2019, pp. 264–
276.

[27] J. Liedtke, N. Islam, and T. Jaeger, “Preventing denial-of-service attacks
on a /spl mu/-kernel for WebOSes,” in Proceedings. The Sixth Workshop
on Hot Topics in Operating Systems (Cat. No. 97TB100133). IEEE,
1997, pp. 73–79.

[28] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin et al., “Meltdown: Reading
kernel memory from user space,” in 27th USENIX Security Symposium
(USENIX Security 18), 2018, pp. 973–990.

[29] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and
R. B. Lee, “Catalyst: Defeating last-level cache side channel attacks
in cloud computing,” in 2016 IEEE international symposium on high
performance computer architecture (HPCA). IEEE, 2016, pp. 406–
418.

[30] F. Liu, H. Wu, K. Mai, and R. B. Lee, “Newcache: Secure
cache architecture thwarting cache side-channel attacks,” IEEE
Micro, vol. 36, no. 5, p. 8–16, Sep. 2016. [Online]. Available:
https://doi.org/10.1109/MM.2016.85

[31] G. Maisuradze and C. Rossow, “ret2spec: Speculative execution using
return stack buffers,” in Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2018, pp. 2109–2122.

[32] L. B. Michael, M. J. Mihaljevic, S. Haruyama, and R. Kohno, “A
framework for secure download for software-defined radio,” IEEE
Communications Magazine, vol. 40, no. 7, pp. 88–96, 2002.

[33] M. Minkin, D. Moghimi, M. Lipp, M. Schwarz, J. Van Bulck, D. Genkin,
D. Gruss, F. Piessens, B. Sunar, and Y. Yarom, “Fallout: Reading kernel
writes from user space,” arXiv preprint arXiv:1905.12701, 2019.

[34] D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and Counter-
measures: The Case of AES,” in Topics in Cryptology – CT-RSA 2006,
D. Pointcheval, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 1–20.

[35] M. K. Qureshi, “New attacks and defense for encrypted-address cache,”
in 2019 ACM/IEEE 46th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2019, pp. 360–371.

[36] Radare2, “UNIX-like reverse engineering framework and command-line
toolset,” https://github.com/radareorg/radare2.

[37] G. Saileshwar and M. K. Qureshi, “CleanupSpec: An Undo Approach
to Safe Speculation,” in International Symposium on Microarchitecture
(MICRO), October 2019.

[38] C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Själander, “Effi-
cient invisible speculative execution through selective delay and value
prediction,” in 2019 ACM/IEEE 46th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 2019, pp. 723–735.

[39] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “Zombieload: Cross-privilege-boundary data
sampling,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, 2019, pp. 753–768.

[40] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss, “Net-
spectre: Read arbitrary memory over network,” in European Symposium
on Research in Computer Security. Springer, 2019, pp. 279–299.

[41] J. Shi, X. Song, H. Chen, and B. Zang, “Limiting cache-based side-
channel in multi-tenant cloud using dynamic page coloring,” in 2011
IEEE/IFIP 41st International Conference on Dependable Systems and
Networks Workshops (DSN-W). IEEE, 2011, pp. 194–199.

[42] M. Taram, A. Venkat, and D. Tullsen, “Context-sensitive fencing: Secur-
ing speculative execution via microcode customization,” in Proceedings
of the Twenty-Fourth International Conference on Architectural Support

1151

Authorized licensed use limited to: University of Illinois. Downloaded on February 19,2024 at 21:38:54 UTC from IEEE Xplore. Restrictions apply.

for Programming Languages and Operating Systems, 2019, pp. 395–
410.

[43] P. Turner, “Retpoline: a Software Construct for Preventing Branch-
target-injection,” https://support.google.com/faqs/answer/7625886,
2018.

[44] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel SGX kingdom with transient out-of-order
execution,” in 27th USENIX Security Symposium (USENIX Security 18),
2018, pp. 991–1008.

[45] S. Van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “Ridl: Rogue in-flight data load,”
in 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 2019,
pp. 88–105.

[46] Y. Wang, A. Ferraiuolo, D. Zhang, A. C. Myers, and G. E. Suh,
“SecDCP: secure dynamic cache partitioning for efficient timing channel
protection,” in Proceedings of the 53rd Annual Design Automation
Conference, 2016, pp. 1–6.

[47] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in Proceedings of the 34th annual
international symposium on computer architecture, 2007, pp. 494–505.

[48] O. Weisse, I. Neal, K. Loughlin, T. F. Wenisch, and B. Kasikci,
“NDA: Preventing Speculative Execution Attacks at Their Source,” in
International Symposium on Microarchitecture (MICRO), 2019.

[49] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, R. Strackx, T. F. Wenisch, and Y. Yarom, “Foreshadow-
NG: Breaking the virtual memory abstraction with transient out-of-order
execution,” Technical report, 2018.

[50] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and
S. Mangard, “ScatterCache: Thwarting Cache Attacks via Cache Set
Randomization,” in USENIX Security, 2019.

[51] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Torrel-
las, “InvisiSpec: Making Speculative Execution Invisible in the Cache
Hierarchy,” in 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2018, pp. 428–441.

[52] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A High Resolution, Low
Noise, L3 Cache Side-Channel Attack,” in USENIX Security, 2014.

[53] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W. Fletcher,
“Speculative Taint Tracking (STT): A Comprehensive Protection for
Speculatively Accessed Data,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
954–968.

1152

Authorized licensed use limited to: University of Illinois. Downloaded on February 19,2024 at 21:38:54 UTC from IEEE Xplore. Restrictions apply.

