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Abstract

Memory optimization kernel features, such as memory
deduplication, are designed to improve the overall effi-
ciency of systems like datacenter servers, and they have
proven to be effective. However, when invoked, these
kernel features notably disrupt the execution of applica-
tions, intensively consuming the server CPU’s cycles and
polluting its caches. To minimize such disruption, we
propose STYX, a framework for offloading the intensive
operations of these kernel features to SmartNIC (SNIC).
STYX first RDMA-copies the server’s memory regions,
on which these kernel features intend to operate, to an
SNIC’s memory region, exploiting SNIC’s RDMA capa-
bility. Subsequently, leveraging SNIC’s (underutilized)
compute capability, STYX makes the SNIC CPU perform
the intensive operations of these kernel features. Lastly,
STYX RDMA-copies their results back to a server’s mem-
ory region, based on which it performs the remaining
operations of the kernel features. To demonstrate the
efficacy of STYX, we re-implement two memory opti-
mization kernel features in Linux: (1) memory dedupli-
cation (ksm) and (2) compressed cache for swap pages
(zswap), using the STYX framework. We then show that
a system with STYX provides a 55-89% decrease in 99'"-
percentile latency of co-running applications, compared
to a system without STYX, while preserving the benefits
of these kernel features.

1 Introduction

The modern OS offers various kernel features that can
improve the overall utilization and/or performance of
systems. Among them, memory optimization kernel fea-
tures, such as memory deduplication, compressed cache

$Mansi and Sun have contributed equally as second authors.

for swap pages, and memory compaction to name a few,
are devoted to utilizing the limited DRAM capacity of
systems more efficiently. These kernel features are at-
tractive to hyperscalers such as Google, Amazon, Meta,
and Microsoft for two key reasons. First, DRAM tech-
nology scaling has notably slowed down, resulting in
stagnant reduction in cost per GB of DRAM. Second,
the DRAM capacity needed for datacenter servers has
rapidly grown, not only for applications but also for soft-
ware packages, profiling, logging, and other supporting
functions required for efficient deployment of applica-
tions (i.e., datacenter memory tax).

These kernel features have been extensively evaluated
and enhanced [6, 19,22,27,31,40,51]. They have proven
to be effective, but they also incur notable deployment
costs. Specifically, they are not frequently invoked, but
they often perform memory- and/or CPU-intensive op-
erations. They bring kilobytes to megabytes of usually
cold data into the server CPU’s caches and then make its
cores intensively execute simple but repetitive operations
on the data, often after disabling kernel preemption. As a
result, they cause significant interference especially with
co-running memory-intensive/latency-sensitive applica-
tions at the server CPU’s cores and caches. This leads
to a substantial increase in the high-percentile latency of
the applications in datacenters (§3).

In this paper, we propose STYX, using SmarTNIC
(SNIC) to efficiently manage the datacenter memorY
taX (§4). Specifically, STYX makes use of two common
Capabilities of SNIC: (C1) the RDMA capability to
copy the server’s memory regions, on which a kernel
feature intends to intensively operate, to SNIC memory
(D in Figure 1) and (C2) the compute capability to of-
fload the intensive operations of kernel features from
the expensive server CPU to the cheap SNIC CPU or
accelerators (2) in Figure 1). (C1) prevents the pollution

USENIX Association

2023 USENIX Annual Technical Conference 619



. User application Kernel feature Kernel feature (offloaded)

---» Kernel feature offloading (function) ---» Kernel feature offloading (data)

Local server 1

Figure 1: Overview of STYX framework.

of the server CPU’s caches that stores application code
and data, while (C2) frees the server CPU’s cores from
executing the intensive operations. As such, STYX offers
a framework that allows us to deploy kernel features with
significantly less disruption to the performance of co-
running applications, without making the kernel features
less effective.

We choose SNIC as our platform to offload intensive
operations of memory optimization kernel features for
two Reasons. (R1) SNIC has already been deployed by
hyperscalers (e.g., Azure SNIC [15] and Amazon Ni-
tro [4]) to minimize the datacenter tax [24] associated
with executing network functions (e.g., compression/de-
compression, encryption/decryption, and regular expres-
sion matching) at high rates. STYX reuses this existing
capability without demanding novel or modified hard-
ware. (R2) SNIC CPU’s cores are not fully utilized as
they are typically used to control accelerators in SNIC
and orchestrate data transfers between the accelerators
and the network controller. Note that STYX is built on
a generic RDMA interface. As such, STYX also allows
servers with standard RDMA NICs (RNICs) to seam-
lessly offload the intensive operations of kernel features
to other servers with SNICs or RNICs.

To demonstrate the efficacy of STYX, we re-implement
two memory optimization Linux kernel Features as
examples: (F1) memory deduplication for virtual ma-
chines (VMs), also known as kernel same-page merging
(ksm [14]) and (F2) compressed cache for swap pages
(zswap [21]) (8§5). Subsequently, we set up a server
with an Intel Xeon CPU-based CPU and an NVIDIA
BlueField-2 SNIC [20,37], and take Redis [41] driven by
YCSB [11] as a representative memory-intensive/latency-
sensitive application running on datacenter servers (§6).
Lastly, we measure the 99""-percentile (p99) response
time (or latency) of Redis for various cases. (§7).

Specifically, we begin by evaluating the p99 latency

values of Redis with systems deploying ksm (denoted as
sys—ksm) and zswap (sys-zswap), and compare them
with those of a system that deploys no memory op-
timization kernel feature (sys-no-mo). We show that
sys—ksm and sys-zswap increase the p99 latency val-
ues by 4.8-9.7x and 8.1-11.0x, respectively, compared
to sys—no-mo. Then, we evaluate the p99 latency val-
ues of Redis with systems deploying STYX-based ksm
(sys-styx-ksm) and zswap (sys-styx-zswap), and
demonstrate that they reduce the p99 latency values
to 1.0-1.1x and 1.8-3.8x%, respectively, compared to
sys—-no-mo, while preserving the benefits of ksm and
zswap. Finally, we assess the impact of running the
STYX-based kernel features on the performance of func-
tions accelerated by SNIC. We choose regular expression
matching (rem) as a representative function accelerated
by a dedicated accelerator in the NVIDIA BlueField-2
SNIC. Even when offloading the intensive operations
of ksm and zswap to the SNIC, STYX increases the p99
latency value of rem by only 1.3%.

2 Background

2.1 Memory Optimization Kernel Features

In this section, we provide an overview of two memory
optimization kernel features in Linux: ksm and zswap.
Other operating systems, such as Windows, also offer
similar features like page combining [7,34] and memory
compression [54]).

ksm. It is a memory deduplication feature in Linux. It
is commonly used with kernel-based virtual machine
(KVM) to quickly consolidate more VMs within a given
physical memory capacity [35], by sharing pages with the
same content among multiple VMs (e.g., pages storing
code for OS and common libraries). As it allows for more
efficient storage of common data in cache or memory,
it also notably improves performance for certain appli-
cations and operating systems [47]. It periodically and
incrementally scans pages of two or more running pro-
cesses to identify those with the same memory contents.
Then, it merges those identical pages into a single physi-
cal copy, updates their page table entries with a copy-on-
write (CoW) attribute, and reclaims the memory space
previously used by the pages. Both the overhead and
benefit of ksm are determined by the number of scanned
pages per invocation of ksm, the frequency of scanning
pages, and the maximum number of merged pages.

zswap. It serves as a compression backend for the Linux
swap daemon (kswapd) which includes synchronous di-
rect and asynchronous background paths. kswapd takes
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the synchronous direct path when the memory alloca-
tor fails to allocate pages due to a lack of free memory
space. This requires kswapd to immediately swap out
the least recently used (LRU) pages to the backing swap
device. kswapd takes the asynchronous background path
when the amount of free memory space drops below
the page_1low watermark. This makes kswapd begin to
swap out pages from the inactive page list, and contin-
ues until the amount of free memory space exceeds the
page_high watermark.

When deployed, zswap intercepts the pages from both
the paths above, compresses them, and places them in
a dynamically allocated memory pool in DRAM (i.e.,
zpool). Meanwhile, when the size of zpool reaches
the max_pool_percent threshold, zswap wakes up and
takes the LRU page from zpool, decompresses and re-
locates it to the backing swap device, and frees the com-
pressed page from zpool. To serve a page fault, zswap
first checks zpool to find whether the page is evicted to
the backing swap device. If the page is found in zpool,
it is simply decompressed and returned by zswap. Other-
wise, the system follows the standard process for swap-
ping in a page from the backing swap device.

Since zswap can notably reduce the need for accessing
the slow backing swap device, it may improve the overall
performance of the system; the page decompression on
the synchronous direct path is part of the performance-
critical path for handling page faults, but it is typically
faster than retrieving pages from the backing swap de-
vice. As such, zswap has been evaluated by Google [27]
and Meta [51] for potential deployment in production
systems.

2.2 SNIC and RDMA

Recently, various SNICs have been developed to offload
functions common in network applications such as se-
curity, compression, and network function virtualization
as part of an effort to reduce the datacenter network pro-
cessing tax [24]. Generally, an SNIC integrates a tra-
ditional network interface controller (NIC) with a CPU,
ASIC- and/or FPGA-based accelerators, and memory and
IO subsystems. For example, an NVIDIA BlueField-2
SNIC [37] consists of 8 ARM CPU cores with private
L1 and shared L2 caches, a cache-coherent on-chip inter-
connect, DRAM and PCle controllers, onboard DRAM
as main memory, and ASIC-based accelerators for reg-
ular expression matching, encryption, and compression.
AMD/Xilinx SN1000 [5] integrates an FPGA fabric with
an SNIC similar to the NVIDIA BlueField-2 SNIC in a
single chip. An SNIC is itself a complete system, recog-

nized as an independent node.

RDMA is supported by most SNICs and standard NICs
used in datacenters. As it allows a client to directly access
the memory of servers at low latency and high bandwidth,
it is now widely used by datacenters [16, 18,28,53,56].
Additionally, an SNIC in a server can access the server’s
local memory through RDMA. RNIC supports two op-
erating modes: two-sided RDMA and one-sided RDMA.
The two-sided RDMA reduces packet processing over-
head by delivering requests (or data) from a client di-
rectly to server’s memory for application processing.
One-sided RDMA allows the client to completely by-
pass the server’s CPU and directly read from or write to
the server’s memory.

3 Impact of Running Kernel Features on
Application Performance

A body of prior work has demonstrated that ksm and
zswap have proven to be effective in improving the over-
all performance of systems [8, 19, 22, 27, 35, 47, 49].
Nonetheless, such benefits come with costs that have
often discouraged system administrators from widely de-
ploying them in datacenters. In this section, we analyze
the costs associated with deploying zswap as an example.

Figure 2 shows a snapshot of (a) consumed CPU cy-
cles, (b) last-level cache (LLC) miss rate, and (c) response
latency of Redis that are captured when zswap-enabled
kswapd is invoked. See Section 6 for the detailed eval-
uation setup and methodology. First, zswap increases
the consumed CPU cycles by 26.4% during the captured
time period (Figure 2(a)). Second, it increases the aver-
age LLC miss rate from 4.4% to 49.8% (Figure 2(b)).
Lastly, it increases the mean, median, 3rd quartile, and
p99 latency values of Redis serving the same number
of requests by 1.5x, 1.2x, 1.8 %, and 2.1 x respectively
(Figure 2(c)).

Although we show the plots only for zswap in Figure 2,
we observe that ksm also exhibits a similar impact on
CPU cycle consumption, LLC miss rate and response
latency of Redis. Subsequently, we discuss the primary
sources of such increases in both zswap and ksm in detail.

ksm. It periodically scans pages and calculates a 32-
bit checksum for each scanned page to more efficiently
identify candidate pages for future merging. Among the
candidate pages, ksm picks two pages and performs a
byte-by-byte comparison to determine if the two pages
can be merged. Both the checksum calculation and byte-
by-byte comparisons of pages are CPU- and memory-
intensive as they bring around 400MB of data to caches
and CPU cores (often from DRAM) and do numerous
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Figure 2: A snapshot of (a) consumed CPU cycles, (b)
LLC miss ratio, and (c) response latency before and after
invoking kswapd while running Redis. We gather the
response latency values for every 1110 requests and plot
them using a box, a vertical line, a triangle, and a horizon-
tal line. The box, triangle, and horizontal line respectively
represent the 17 to 3"¢ quartile range, mean, and median
of the latency values for 1110 requests.

arithmetic and comparison operations for that amount of
data per invocation of ksm.

zswap. When invoked, it performs compression and
decompression, which are highly compute-intensive and
thus significantly consume CPU cycles [23,39]. For in-
stance, in Figure 2, approximately 45,000 pages are com-
pressed in only 5 seconds, consuming roughly 25-50%
cycles of the server CPU’s core while zswap is running.
These pages represent 175MB (i.e., 45,000 x 4KB) of
cold data that is brought into the server CPU’s LLC.
Since they are unlikely to be used soon, they end up pol-
luting the server CPU’s LLC. Later, when compressed
pages in zpool are evicted to the backing swap device
(§2.1), the pages are decompressed and re-pollutes the
server CPU’s LLC with cold data again.

4 St1YX Framework

In Section 3, we demonstrated that widely used memory
optimization kernel features are often CPU- and memory-
intensive, and significantly interfere with co-running ap-
plications at the server CPU’s cores and caches. To reap
the benefits of deploying these kernel features while min-

imizing interference with the co-running applications, we
propose STYX. In this section, we provide an overview of
STYX and describe its workflow as a general framework.
Subsequently, in Section 5, we delve into the usage of
STYX for offloading CPU- and memory-intensive opera-
tions of ksm and zswap to SNIC.

4.1 Overview

We design STYX based on a key observation that memory
optimization kernel features, similar to network applica-
tions, can be decomposed into control and data planes.
We then assign the most CPU- and memory-intensive op-
erations of the kernel features to the data plane, and have
the SNIC’s CPU handle the data plane. This facilitates
STYX to significantly reduce the costs of deploying the
kernel features without compromising their benefits.

Figure 3a depicts an abstracted workflow of conven-
tional memory optimization kernel features. When in-
voked, a kernel feature running on the server’s CPU (D
determines one or more memory regions that it intends
to operate on; 2) copies the memory regions to the server
CPU’s caches; () operates on the memory regions (e.g.,
comparing two pages using memcmp in the case of ksm);
and @ makes a decision for the next step (e.g., whether
merge two pages or not in the case of ksm) based on the
result of 3). STYX considers ) and @ as the control
plane, while it assigns ) and 3 to the data plane.

In a conventional system, the server’s CPU performs
both control- and data-plane operations of a given ker-
nel feature. As discussed in Section 3, the data-plane
operations significantly pollute the server CPU’s caches
and intensively consume the server CPU’s valuable cy-
cles. In contrast, in an STYX-based system, the SNIC’s
CPU performs data-plane operations instead, while the
server’s CPU still performs the control-plane operations.
Specifically, the control plane on the server’s CPU first
determines memory regions that the data plane on the
SNIC’s CPU will operate on, RDMA-copies the memory
regions from the server’s memory to the SNIC’s memory,
and then makes the data plane on the SNIC’s CPU oper-
ate on the memory regions. After the data plane on the
SNIC’s CPU completes operations on the RDMA-copied
memory regions, it RDMA-copies the results back to the
server’s designated memory region. Finally, as the con-
ventional system does, the control plane on the server’s
CPU decides the next step based on the results.
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Figure 3: Workflow of a memory optimization kernel feature in conventional and STYX-enabled systems. For brevity,
only the cache and memory regions of the kernel feature’s data plane are illustrated.

struct STYX_ descriptor ({
func_type func;
// memory regions RDMA-copied to SNIC

u64* addrs; // starting addresses
int* lens; // lengths
int num; // number

// RDMA resources
void* completion_queue;
void* send_queue;
void* recv_queue;

bi
Listing 1: Data structure of STYX_descriptor.

4.2 Workflow

Figure 3b illustrates a high-level workflow of STYX
framework, which is built on top of kernel-space RDMA
verbs. It comprises four steps: @) setup, @ submission,
© remote execution, and @ completion.

@ Setup. STYX first determines the functions that will
be offloaded to SNIC. A function comprises data-plane
operations within a specific kernel feature. For instance,
memcmp, which performs a byte-by-byte comparison of
two memory regions, can be such a function in ksm. Next,
STYX establishes a communication interface between the
server and the SNIC by setting up RDMA connections
between them. Specifically, STYX allocates necessary
RDMA resources, such as completion and work queues,
in the kernel space on the server and the user space on
the SNIC (@ in Figure 3(b)). To avoid contention for
the RDMA resources among functions, STYX sets up
one RDMA connection for each function. Finally, for
each function, STYX creates two descriptors, each called

STYX_descriptor, on the server and the SNIC, respec-
tively, and then associates the descriptors with the cor-
responding RDMA connection. STYX_descriptorisa
data structure described in Listing 1, which stores the
following information: a function identifier, pointers to
the starting addresses of memory regions, the lengths
and number of the memory regions, and pointers to the
RDMA resources. It is designed to provide a uniform and
generic interface for a server to provide necessary infor-
mation for an SNIC that will execute a specific function
on behalf of the server.

@ Submission. Before a kernel feature executes a func-
tion, STYX on the server updates the descriptor associ-
ated with the function with the starting addresses and
lengths of memory regions that it has determined to
work on. Next, STYX uses two-sided RDMA to offload
the function. Specifically, STYX on the server sends an
RDMA send request based on the updated descriptor,
making the SNIC RDMA-copy the memory regions from
the server’s memory to the SNIC’s memory (@ in Fig-
ure 3(b)). Lastly, STYX calls RDMA recv. This suspends
the execution of the kernel feature until the SNIC sends
the results of the function back to the server through
RDMA send, and allows the kernel feature to yield the
server CPU’s core to other application processes.

Alternatively, STYX can employ one-sided RDMA. In
this approach, STYX on the server posts the updated start-
ing addresses and lengths to the server’s designated mem-
ory region (i.e., the descriptor on the server) registered to
the SNIC. At the same time, STYX on the SNIC continu-
ously polls the memory region using RDMA read. Once
STYX on the SNIC obtains the updated addresses and
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lengths, it proceeds with RDMA-copying the memory
regions from the server’s memory to the SNIC’s mem-
ory using RDMA read. This one-side RDMA-based
approach can allow STYX to free up the server’s CPU
for other application processes faster than the two-sided
RMDA-based approach. However, it requires the SNIC’s
CPU to poll the registered memory region using RDMA
read requests, resulting in consuming PCle interconnect
bandwidth and SNIC CPU’s cycles.

© Remote Execution. After receiving an RDMA send
request from the server, the SNIC starts to RDMA-copy
the server’s memory regions to the SNIC’s memory re-
gion pointed by the RDMA recv request using a single
scatter-gather transfer (@-1 in Figure 3(b)). The comple-
tion of serving the RDMA recv request wakes up STYX
on the SNIC to execute a function associated with the
RDMA connection. Subsequently, STYX on the SNIC
creates a worker thread to execute the function which
operates on the RDMA-copied memory region (€)-2 in
Figure 3(b)). Note that executing such a function may
interfere with network applications co-running on the
SNIC. Nonetheless, the SNIC CPU serves as a control
plane for network applications executed by the SNIC
accelerators (§1), and STYX utilizes unused or under-
utilized SNIC CPU cores. Therefore, STYX negligibly
affects the performance of network applications running
on the SNIC (§7.6).

@ Completion. After completing the remote execution
of the function, STYX on the SNIC posts an RDMA
send request to send the results (e.g., the checksum of
a page in the case of ksm) to STYX on the server (€)-1
in Figure 3(b)). After STYX on the server receives the
result through RDMA recv previously invoked at @, it
makes the kernel feature resume the execution and read
the results from the server memory (@-2 in Figure 3(b)).
At the same time, STYX on the SNIC invokes RDMA
recv, which makes STYX on the SNIC sleep until it
receives RDMA send from the server.

Similar to what is discussed in @, STYX on the SNIC
can send the result to the server through one-sided RDMA
write to a memory region registered on the server. How-
ever, this demands the server’s CPU to keep polling the
memory region until the completion signal is detected.
This not only wastes the server CPU’s cycles but also
prevents the kernel feature from yielding the server CPU
to application processes.

5 Offloading Kernel Features with STYX

In Section 4, we provided a high-level workflow of STYX
as a general framework for offloading intensive opera-

tions (or functions) of memory optimization kernel fea-
tures to SNIC. In this section, we will further elaborate
on implementations of STYX-based ksm and zswap, as
well as optimizations tailored for each kernel feature.

5.1 ksm

ksm is a memory-deduplication feature that merges pages
with the same content. We identify the two most resource-
intensive functions to offload to SNIC: (1) page compari-
son and (2) checksum calculation. The page comparison
gives the relative address of the first byte that differs in
two pages. This is used to determine whether the pages
can be merged and the relative order of the two pages.
The checksum calculation provides a word-size hash
value calculated based on the page content and indicates
whether a page has been changed between scan passes
by the ksm daemon. Algorithm | describes one pass of
STYX-based ksm where the page comparison and the
checksum calculation are performed by STYX_compare
and STYX_checksum, respectively.

Since we offload two functions to SNIC, STYX cre-
ates two RDMA connections and two descriptors dur-
ing the setup phase (). STYX_compare requires two
for the number of memory regions as it compares two
pages (or memory regions). On the other hand, since

Algorithm 1: ksm with STY X offloading

1 Init stable_tree and unstable_tree
2 while pages for this pass > 0 do

3 cand_page = next page in the pass

4 for page € stable_tree do

5 if STYX_compare(cand_page, page) then
6 merge(cand_page, page)

7 goto line 2

8 new_cksum = STYX_checksum(cand_page)

9 old_cksum = cand_page.cksum
10 cand_page.cksum = new_cksum
11 if new_cksum == old_cksum then

12 for page € unstable_tree do

13 if STYX ¢ ompare(cand_page, page)

then
14 merged_page = merge(cand_page,
page)

15 cow_protect(merged_page)

16 remove(page, unstable_tree)

17 insert(nerged_page, stable_tree)

18 goto line 2
19 insert(cand_page, unstable_tree)

20 End of pass, sleep()
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STYX_checksum calculates a checksum for a given page,
it needs one for the number of memory regions. For
the length of a memory region, both STYX_compare and
STYX_checksum use the size of a page in byte. During
the submission phase (@), STYX updates the starting
addresses of the memory regions in the descriptor for
STYX_compare with the pointers to two chosen pages.
For STYX_checksum, STYX takes the pointer to a se-
lected page and updates the descriptor accordingly. Sub-
sequently, STYX RDMA-copies these memory regions
from the server memory to the SNIC memory. During
the remote execution phase (@), STYX on the SNIC per-
forms a byte-by-byte comparison and an xxHash-based
checksum calculation [10] on the RDMA-copied page(s).
It then returns the relative address of the first byte that
differs in the two pages (STYX_compare) and the word-
size checksum (STYX_checksum), respectively, to STYX
on the server. Receiving the results from STYX on the
SNIC, STYX on the server decides whether it will merge
the two pages or not, and updates the checksum value for
the scanned page during the completion phase (@)).

5.2 zswap

zswap serves as a compression backend for kswapd,
and it was incorporated into the Linux kernel starting
from version 3.5. As described in Section 2.1, there are
synchronous direct and asynchronous background paths.

Algorithm 2: kswapd with STYX offloading

1 while kswapd_enabled do

2 if free_page < page_ 1ow then
3 kswapd_running = true;
4 while kswapd_running do
5 page = page_to_swap_out()
6 if zpool > max_zpool_size then
7 if STYX_decompression(LRU_page,
dst) fails then
8 kernel_decompress(LRU_page,
dst);
9 write_to_backing_swap_device(dst);
10 free_zpool_space(LRU_page);
11 if STYX_compression(page, dst) fails
then
12 | kernel_compress(page, dst);
13 write_to_zpool(dst);
14 if free_page > page_high then
15 ‘ kswapd_running = false;
16 else
17 L kswapd_sleep();

STYX is capable of offloading functions from both paths
to SNIC. Nonetheless, as an optimization, we choose to
offload only the asynchronous background path which is
taken when (1) the amount of free memory space falls be-
low the page_1low watermark, and (2) the size of zpool
reaches the max_pool_percent threshold. Specifically,
when (1) happens, STYX-based zswap makes SNIC com-
press pages and place the compressed pages in zpool
until the amount of free memory space is above the
page_high watermark. When (2) occurs, it makes SNIC
decompress the LRU page from zpool and relocate it
to the backing swap device. We propose this optimiza-
tion because the latency involved in RDMA-copying
pages to the SNIC memory over the PCle intercon-
nects (i.e., ~5us) may slow down the time-sensitive syn-
chronous direct path, and degrade overall system perfor-
mance. Algorithm 2 describes kswapd modified to sup-
port STYX-based zswap where the page compression and
decompression are performed by STYX_compression
and STYX_decompression, respectively.

Since we offload two functions to SNIC, the setup and
submission phases for STYX-based zswap are exactly
the same as STYX-based ksm except that zswap has only
one memory region to RDMA-copy to the SNIC memory
for both the functions. Finally, after the remote execu-
tion of STYX_compression and STYX_decompression,
STYX on the SNIC will return the compressed and de-
compressed pages, respectively, to STYX on the server.

6 Methodology and Implementation

System Setup. We set up a server with an Intel Xeon
Gold CPU and an NVIDIA BlueField-2 SNIC. The de-
tailed hardware and software configurations of the server
are listed in Table 1. Note that we lock the CPU fre-
quency at 2.1 GHz and disable hyper-threading (HT) for
more consistent performance over multiple measurement
runs. VMs are pinned to specific CPU cores to reduce
performance variations and interference caused by dy-
namic voltage/frequency scaling (DVFS) [12], HT [32],
and VM scheduling.

Workload. We run Redis [41] with Yahoo! Cloud Serv-
ing Benchmark (YCSB) [11] on the system. Redis is an
in-memory data store and is used as a distributed, in-
memory key—value database, cache, and message broker,
with an optional durability feature. YCSB is a benchmark-
ing framework to evaluate the performance of various in-
memory key-value stores. It comes with four workloads:
(a) update heavy,(b) read heavy,(c) read only,and
(d) read latest that consist of (a) 50% read and 50%
update, (b) 95% read and 5% update, (c) 100% read, and
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Table 1: Hardware and Software configurations.

Intel Xeon 6138P Server

CPU: 16 Skylake cores @ 2.1GHz w/ HT disabled,
32KB L1, IMB L2, and 1MB L3 caches per core
Memory: 5-Ch. w/ 5 16GB DDR4-2666 DRAM modules
OS: Ubuntu 18.04.6 LTS, Linux kernel 5.4

NVIDIA BlueFeild-2 SNIC

Network: ConnectX-6 Dx w/ two 25 Gbps Ethernet ports ,
RDMA over converged Ethernet V2

CPU: 8 ARM A72 cores @ 2.5GHz, 640 KB L1 per core,
4 MB L2 caches per 2 cores, and 6 MB L3 cache
Memory: 1 Ch. w/ 16GB DDR4-1600 DRAM module
Accelerators: regular expression matching, compression,
and cryptography

OS: Ubuntu 20.04.2 LTS, Linux kernel 5.4

Kernel Feature

ksm: sleep_between_scan=20ms, free_mem_thres=20
pages_to_scan € [64, 1250] # adjusted by ksmtuned
zswap: compressor_type = 1zo, max_pool_percent =20
zpool_management = zbud

Virtual Machine

Hypervisor: QEMU-KVM 2.11.1
VM: Ubuntu Cloud 18.0, 1 Core, 4GB memory

(d) 95% read and 5% insert, respectively.

Methodology. Figure 4 depicts the evaluation environ-
ments for ksm and zswap. ksm aims to reduce memory
usage in virtualized environments where multiple VMs
are running similar workloads. We set up 16 VMs and
pin each VM to a physical core. Then, we organize the
VMs into 4 groups, each comprising 3 VMs for Redis
clients and 1 VM for a Redis server. To trigger zswap,
we set up a background workload designed to allocate

|

sEEEm c
——
[vemory | veroy ool

(a) Setup for ksm (b) Setup for zswap

Figure 4: Experimental setup for evaluating STYX-based
ksm and zswap. The blue-color boxes indicate the Redis
server (‘S”) and client (‘C”). The lighter-blue blocks (‘M”)
represent the cores running a background workload.

and free memory space periodically. We need such a
background workload because Redis is in-memory data
store, and it should be configured not to incur any page
faults. Otherwise, p99 latency is dominated by handling
page faults. We use cgroup [1] to protect the pages used
by Redis from being swapped out. In the experimental
setup for zswap, Redis servers and clients run on the
physical cores directly without VMs.

7 Evaluation

7.1 Latency

In this section, we choose p99 latency as a key per-
formance metric for our evaluation because many im-
portant datacenter applications need to meet certain
high-percentile latency requirements [36,38]. Figure 5a
shows the p99 latency values of Redis on systems
that deploy ksm (sys-ksm), zswap (sys-zswap), STYX-
based ksm (sys-styx-ksm), and STYX-based zswap
(sys-styx-zswap), normalized to those of a system
without deploying any memory optimization kernel fea-
ture (sys—-no-mo). Overall, it demonstrates that STYX
can significantly reduce the p99 latency increased by
deploying ksm and zswap.

Specifically, on average (geometric mean), sys-ksm
and sys-zswap give 6.24x and 8.70x higher p99 la-
tency values than sys-no-mo, respectively. In contrast,
sys-styx-ksm and sys-styx-zswap offer 1.11x and
3.05x higher p99 latency values than sys-no-mo, respec-
tively. That is, sys-styx-ksm and sys-styx-zswap re-
duce the p99 latency increase by 5.62x and 2.85x, com-
pared to sys-ksm and sys-zswap, respectively. Note
that sys-styx-ksm offloads most of the intensive op-
erations to SNIC, practically eliminating the p99 la-
tency increase of sys-styx-ksm. On the other hand,
sys-styx-zswap offloads only the intensive operations
of the asynchronous background path to SNIC. That is,
the intensive operations of the synchronous direct path
still affect the p99 latency of Redis, contributing to more
than 3 X increase in p99 latency.

In addition, Figure 5b shows the average latency val-
ues of Redis on those systems. The average latency of
Redis is also an important performance metric, as it is
inversely proportional to the throughput. Note that Redis
often throttles serving requests to prevent response la-
tency from increasing too much when the system re-
ceives more requests than it can handle efficiently [3].
On average, sys-ksm and sys-zswap give 1.34x and
2.58 x higher average latency than sys-no-mo, respec-
tively. In contrast, sys-styx-ksmand sys-styx-zswap
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Figure 5: Latency values of Redis with YCSB workloads running on sys-ksm, sys-styx-ksm, sys-zswap and

sys-styx-zswap, normalized to sys-no-mo.

offers only 1.05x and 1.55 %, higher average latency than
sys—no-mo, respectively. That is, sys—-styx-ksm and
sys-styx-zswap reduce the average latency increase
by 22% and 40%, compared to sys-ksm and sys-zswap,
respectively.

7.2 LLC Miss Rates

To analyze how STYX reduces the negative impact of
deploying ksm and zswap on p99 latency of Redis, we
measure the LLC miss rates of the server CPU every 1
second while evaluating sys-no-mo, sys-styx-* and
sys—*. We report the p99 LLC miss rates from approxi-
mately 160 Is intervals instead of the average LLC miss
rates, because intervals with high LLC miss rates are
likely responsible for p99 latency values of Redis.
Table 2 summarizes the p99 LLC miss rates across
all YCSB workloads at their highest throughput values
that the systems can provide. This shows that the mem-
ory optimization kernel features can significantly in-
crease the p99 LLC miss rates, bringing large amounts
of cold data into the server CPU’s caches when invoked.

Specifically, sys-ksm and sys-zswap give 7.33x and
1.70x higher p99 LLC miss rates than sys-no-mo, re-
spectively, in some intervals. In contrast, sys-styx-ksm
and sys-styx-zswap offer 3.78 x and 1.28 x higher p99
LLC miss rates than sys-no-mo, respectively. That is,
sys-styx-ksm and sys-styx-zswap reduce the p99
LLC miss rate increase by 48% and 25%, respectively.
Such a benefit comes from the fact that sys-styx-ksm
and sys-styx-zswap RDMA-copy the server’s memory
regions that ksm and zswap work on to the SNIC memory
instead of the server CPU’s caches.

Table 2: p99 LLC miss rates of three systems
(sys-no-mo, sys-*, and sys-styx-*) for different
YCSB workloads.

a b c d GeoMean
no-mo 9.7% 7.1% 7.3% 8.0% 8.0%
ksm 60.4% 569% 59.8% 57.5% 58.6%
styx-ksm 40.4% 26.5% 27.2% 28.4% 30.2%
no-mo 18.5% 214% 222% 21.7% 20.9%
zZswap 347% 413% 339% 32.6% 35.5%
styx-zswap 25.1% 27.8% 29.8% 24.7% 26.8%
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Table 3: CPU utilization of two systems (sys-* and
sys-styx-*) for different YCSB workloads.

a b c d GeoMean
ksm 26.0% 26.0% 259% 25.9% 26.0%
styx-ksm 7.1% 7.3% 6.8% 6.7% 7.0%
zswap 235% 19.8% 20.5% 17.8% 20.3%
styx-zswap 13.0% 89% 11.8% 8.4% 10.4%

Note that the p99 LLC miss rate of sys—no-mo for ksm
is much lower than that of zswap. This is because of the
background workload designed to incur page faults for
zswap. Besides, in the case of zswap, STYX offloads only
intensive operations of the asynchronous background
path to SNIC. That is, intensive operations of the syn-
chronous direct path still pollute the server CPU caches
when the background workload incurs page faults. Lastly,
even in the case of ksm, STYX does not offload all the
operations, either.

7.3 CPU Cycle Consumption

In addition to reducing cache pollution, STYX conserves
the server CPU’s cycles, as it offloads the CPU-intensive
operations to the SNIC CPU. To assess the impact of
running ksm and zswap on consuming the server CPU’s
cycles, we identify the number of 1-millisecond intervals
that both a kernel feature and Redis co-run on a server
CPU’s core while measuring the number of server CPU’s
core cycles consumed by the kernel feature during these
intervals. To get the average CPU utilization shown in
Table 3, we sum up all the server CPU’s core cycles
consumed by the kernel feature and then divide it by the
total number of the server CPU’s core cycles during the
intervals in which the kernel feature and Redis co-run.

Table 3 shows that STYX considerably reduces the
consumption of the server CPU’s core cycles. On av-
erage, sys-styx-ksmand sys-styx-zswap reduce the
server CPU’s core cycles consumed by ksm and zswap
from 26% to 7% and from 20% to 10%, respectively.
The server CPU’s cycles saved by offloading intensive
operations of ksm and zswap to SNIC can be used for
Redis, which minimizes disruption of Redis operations
during these co-running intervals.

7.4 Offloading Latency

Table 4 shows the breakdown of the latency values of ksm
and zswap functions offloaded to the NVIDIA BlueField-
2 SNIC. By analyzing the breakdown, we can identify the
offloading steps that may provide further optimization
opportunities. We do not include the latency breakdown

Table 4: The breakdown of the offloading latency val-
ues of each function and the percentage values of func-
tion execution time in total kernel feature execution time
per invocation. f1 and £2 correspond to comparison
and checksum of ksm, respectively. For £1, we measure
the latency of comparing two pages with the same con-
tent, which gives the longest latency. £3 and f4 rep-
resent compression and decompression of zswap, re-
spectively.

f1l f2 £3 f4

O (s) 051 049 052 049

styx- @ (us) 1461 1293 2026 16.97
ksm/zswap @ (us) 504 497 521 513
%inTot. 572 323 254 83
%inTot. 369 195 123 6.1

ksm/zswap

of the setup step (@), because it is called once and the
latency cost is amortized over time. The submission step
(@) takes ~0.5 microseconds, e.g., only ~2% of the total
latency of offloading the functions to SNIC. This latency
primarily comes from the time to send an RDMA send
request to SNIC.

The remote execution step (@) takes a total of 13—
20 microseconds depending on the offloaded functions.
Specifically, it spends 5—7 microseconds for RDMA-
copying memory regions from the server memory to the
SNIC memory. It spends the remaining 8—15 microsec-
onds for the SNIC CPU to execute the functions of ksm
and zswap. As the RDMA-copy latency is responsible
for a dominant fraction of the remote execution step,
we may consider making SNIC’s on-chip accelerators
execute these functions to further reduce the remote exe-
cution latency. However, the accelerators in the NVIDIA
BlueField-2 SNIC are connected to the on-chip PCle in-
terconnect. Thus, it still takes a notable amount of time to
offload functions from the SNIC CPU to the accelerators
(e.g., ~7 milliseconds for the compression accelerator),
which involves another DMA transfer within SNIC.

The completion step (@) consumes a notable amount
of time spent by interrupt handling and process context
switching between application and kernel feature pro-
cesses. During this step, the SNIC CPU remains active
after submitting the RDMA request until receiving an
acknowledgment from the server CPU. This waiting time
is included as part of the latency of the completion step.

7.5 Effectiveness of Kernel Features

It takes a longer time to offload functions of the kernel
features to SNIC than to run them directly on the server
CPU. This in turn increases the overall execution time
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and the size of zpool (area) over time in sys-zswap and
sys—-styx-zswap.

of the kernel features and may affect the kernel feature’s
effectiveness. We take zswap as an example and plot:
(1) the number of compressed pages and (2) the size of
zpool over time in Figures 6. Although the compres-
sion operation performed by the SNIC in STYX does
result in longer latency, the overall effectiveness and per-
formance of zswap are not greatly affected. First, we
observe that the size of zpool is not directly proportional
to the number of compressed pages. This is because the
compression ratio of pages varies across pages. Figure 6
shows that STYX-based zswap can provide a comparable
compression rate close to what zswap can, based on the
number of compressed pages. Figure 6 also shows that
with STYX, the rate of growth of zpool is only 2% lower
than that of the standard zswap implementation. This is
explained by run-to-run performance variations.

Note that both zswap saves the disk I/O as it
compresses the pages into swap memory and avoids
the direct swap out. We monitor the disk I/O at the
runtime of the workloads and see the overall disk I/O
consumption is 39% lower when zswap is enabled.
The disk I/O reduction is attributed to the swap-out
compressing cache in zswap. Upon deploying STYX,
the disk I/O throughput remains 35% lower than the
sys—-no-mo case where no zswap feature runs. We see
that both sys-zswap and sys-STyx-zswap achieve
comparable disk I/O saving. In summary, STYX-based
zswap preserves the benefits of zswap while notably
reducing the disruption of co-running applications
caused by zswap.

7.6 SNIC Application Performance

Since SNIC has its own designated roles, we need to
analyze the impact of running STYX on performance of
applications that SNIC is designed to accelerate. Specifi-
cally, we choose regular expression matching (rem) as an

application; since it has been extensively used for various
network security applications and the NVIDIA BlueField-
2 SNIC provides a dedicated accelerator. Table 1 gives
an overview of the NVIDIA BlueField-2 SNIC. We take
the DPDK-Pktgen tool [52] on a remote server to send
network packets to the SNIC. We configure the SNIC and
DPDK-Pktgen to exercise the maximum 25Gbps network
bandwidth, and vary the size of packets to observe the
utilization of the SNIC CPU’s cores.

As the packet size increased from 128 bytes to 1024
bytes, the number of SNIC CPU’s cores required to
achieve the maximum rem throughput decreases from 5
to 1. Smaller packet sizes demand more packets per sec-
ond to use the full network bandwidth, which in turn re-
quires more cores. In our current implementation, STYX
on the SNIC utilizes only ~30% of a single core of the
SNIC CPU, which is obtained after running the most
CPU-intensive function, page compression in zswap.
That is, the SNIC can handle STYX with little impact
on the performance of rem. Our experiment shows that
the SNIC running only rem gives a p99 latency of 13.83
microseconds, while the SNIC running both rem and
STYX offers a p99 latency of 13.85 microseconds. It also
confirms that the SNIC running both rem and STYX do
not decrease the maximum throughput of rem.

8 Related Work

Exploring the improved compute efficiency of heteroge-
neous computing, many past proposals have focused on
offloading CPU-intensive operations of user-space pro-
grams from the CPU to xPUs and FPGA. In contrast, rel-
atively less attention has been given to offloading CPU-
and memory-intensive operations of kernel-space pro-
grams from the CPU so far. Nevertheless, it has become
increasingly important, especially for datacenter servers
to cost-effectively reduce the high datacenter tax.

Some past proposals aim to make kernel features
run more efficiently. One pioneering proposal is
Pageforge [45], which implements a hardware mech-
anism in the memory controller to execute the page
comparison operations of ksm. It also exploits the Er-
ror Correcting Code (ECC) engine in the memory con-
troller to perform the checksum calculation operations of
ksm. Although Pageforge is effective, it requires hard-
ware changes in the memory controller. Lin et al. pro-
pose to accelerate checksum calculation using GPU [30].
XLH [35] enhances the page scan in ksm, utilizing hints
from guest I/O in a VM environment. It allows ksm to
identify mergeable pages earlier and merge more pages.
Nonetheless, it does not reduce either the consumption
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of the server CPU’s cycles or the pollution of its caches.
ezswap [25] estimates the compression ratios of pages
in advance, compresses only highly-compressible pages,
and store them in zpool. Classic zswap blindly chooses
pages to swap out and compress based on the LRU policy.
Song et al. propose an efficient way to enhance zswap by
skipping the compression of incompressible pages [46].
These optimizations are orthogonal to our work and can
be employed together with STYX.

Abeyrathne et al. [2] demonstrated the potential of
offloading kernel functions to FPGA by utilizing the
advanced features of the latest Xilinx FPGA with the
provided kernel modules. STYX instead deals with the
problems by elaborative and creative designs without
any limitation on the FPGA model. Roulin er al. [42]
examined the migration of the user-space network switch
daemon to the kernel space. This setup aims to grant
complete control of the routing ASIC to the Linux ker-
nel, thereby reducing the overhead of kernel-space and
user-space communication. However, this approach does
not offer a general solution to the communication be-
tween the OS kernel and the offloading device, as it is
specifically designed for network switch APIs.

There also have been many studies conducted on
SNIC to explore its capacity in various ways. Of-
floading various functions, such as distributed services
and intrusion detection, to SNICs is a promising ap-
proach to mitigate resource consumption on servers, en-
hance the performance of specialized operations, and im-
prove overall energy efficiency [9, 13, 15,17,29,48,50].
Specifically, LineFs [26] offloads distributed file system.
F1lexTOE [44] offloads TCP to SmartNIC with flexibility
and high performance. Xenic [43] uses the LiquidIO 3
SNIC [33] for fast distributed transactions. Pigasus [55]
uses an FPGA-based SNIC to accelerate intrusion detec-
tion and prevention systems. STYX focuses on harness-
ing the capabilities of SNICs to effectively mitigate the
datacenter memory tax.

9 Conclusion

In this paper, we first showed that memory optimization
kernel features intensively consume the server CPU’s
cycles and pollute its caches when they are invoked. This
in turn leads to a significant increase in the p99 latency
of memory-intensive/latency-sensitive datacenter appli-
cations. Second, we proposed STYX as a solution to
minimize the consumption of server CPU’s cycles and
the pollution of its cache caused by these kernel features.
STYX accomplished these by leveraging the RDMA and
compute capabilities of modern SNIC, and offloading

the intensive operations of these kernel features to SNIC.
Lastly, we demonstrated the effectiveness of STYX af-
ter re-implementing two memory optimization kernel
features in Linux: ksm and zswap using the STYX frame-
work and running memory-intensive/latency-sensitive
applications. We showed that the systems with STYX-
based ksm and zswap achieved 5.6 x and 2.9 x lower p99
latency values than the systems with classic ksm and
zswap, while preserving the benefits of ksm and zswap.
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